

Compendium Vérins à vis sans fin

www.pfaff-silberblau.com

Table des matières Références _____ Conception _____ Vérins à vis sans fin _____ Renvois d'angle _____ Protection des vérins _____ Accouplements et allonges élastiques _____ Accessoires Informations générales

www.pfaff-silberblau.com

Vérins à vis standard SHE et élements cubiques MERKUR pour les applications standards

Vérins à vis "hautes performances" HSE pour les utilisations aux exigences particulièrement dynamiques

Mécanismes de levage "grande vitesse" SHG pour les vitesses particulièrement élevées

Composants de levage spéciaux réalisés dans des versions sur mesure

Renvois d'angle

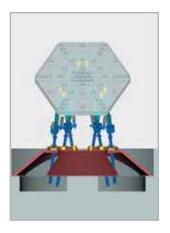
Accessoires pour les vérins à vis et les installations de levage

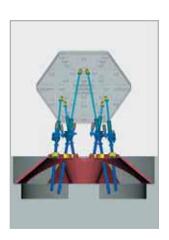
Sommaire

1 1.1	Références Modèle de démontration à 3 axes	2-6 6
2	Conception	7-21
2.1	Tableau récapitulatif des formules utilisées	7
2.2	Exemples d'installations	8-9
2.3	Durée de vie L _h	10 10-11
2.4	Directives pour l'application Températures ambiantes	10-11
2.6	Précision	12
2.7	Applications spéciales	13
2.8	Dimensionnement des vérins à vis	14-16
2.9	Caractéristiques de fonctionnement admissibles	16-17
2.10	Installations de levage	18
2.11	Schémas de montage	19-21
3	Vérin à vis sans fin	22-101
3.1	Aide à la construction	22-24
3.2	Type 1 - Type 2	25
3.3	Formes de construction	26-33
3.4	Caractéristiques techniques	34-57
3.5	Schémas cotés de la série SHE	58-70
3.6 3.7	Schémas cotés de la série MERKUR Schémas cotés de la série HSE	71-77 79-86
3.8	Schémas cotés de la série SHG	87-94
3.9	Schémas cotés des écrous mobiles spéciaux	95-97
3.10	Positions de montage, repérage des arbres	98-99
3.11	Indications à fournir lors d'une commande	100-101
4	Renvois d'angles	102-117
4.1	Formes de construction	102-104
4.2	Conception	104-107
4.3	Schémas cotés	108-114
4.4	Indications à fournir lors d'une commande K13	115
4.5	Indications à fournir lors d'une commande KA / KV	11/117
	et NORMA	116-117
5	Protections des vérins	118-125
5.1	Soufflets	118
5.2	Schémas cotés, type 1	119-121
5.3	Schémas cotés, type 2	122-124
5.4	Protection spirales acier FS	125
6	Accouplements et allonges élastiques	126-131
6.1	Accouplements élastiques	126-127
6.2	Allonges élastiques	128-130
6.3	Code de commande	131

7	Accessoires	132-142
7.1	Plaques articulées	132
7.2	Supports articulés	133
7.3	Lanternes moteurs	134-136
7.4	Brides moteurs pour vérins arbre creux	137
7.5	Paliers	138
7.6	Paliers à flasque	139
7.7	Volants	140
7.8	Dispositifs de graissage	140
7.9	Interrupteurs	141-142
7.10	Commandes électriques	142
8	Informations générales	143

Aperçu photos d'application :


Vérin à vis sans fin HSE hautement performant en version spéciale pour mouvement élévatoire de 0° à 90° d'une antenne de 11,1 m 83


www.pfaff-silberblau.com

Référence

1

Photos société VERTEX ANTENNENTECHNIK GmbH Mécanisme cinématique parallèle faisant fonction de système d'entraînement d'une unité de réception radioastronomique composée de 6 vérins à vis sans fin HSE hautement performants avec une course de 3 500 mm.

Le système est conçu pour le recensement exact de plusieurs radiotélescopes montés ensemble sur la plateforme.

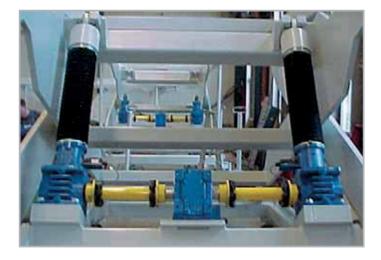
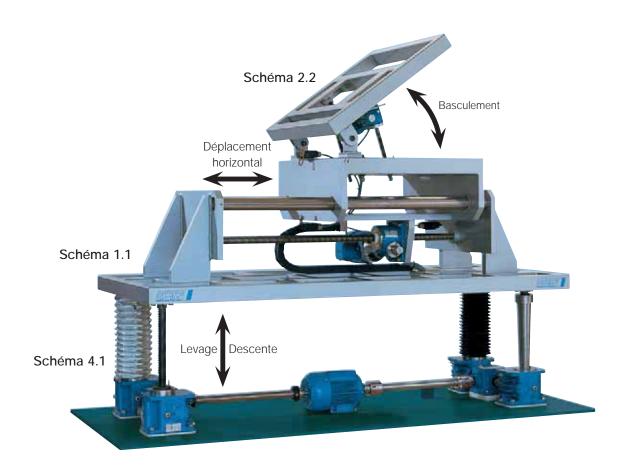


Photo société Mero Airporttechnik Vérins à vis sans fin hautement performants pour le réglage de hauteur de plateformes d'entretien pour les avions

Référence

Tables élévatrices mobiles à ciseaux avec des vérins et plaques articulées Vérin à vis sans fin HSE hautement performant, type 1 en entraînement tandem synchronisé par allonge élastique

Vérin à vis sans fin HSE hautement performant en version spéciale pour mouvement élévatoire de 0° à 90° d'une antenne de 11,1 m


Photo société SBS Bühnentechnik GmbH Installation de levage avec vérins à vis multiples (vérins à vis sans fin HSE hautement performants) comportant un dispositif de sécurité conformément à BGV C1 (VBG 70), pour le réglage du podium de salle du centre culturel de Francfort/Oder. La synchronisation s'effectue par renvois d'angle et allonge élastique.

Ш

www.pfaff-silberblau.com

Modèle de démonstration à 3 axes

Schéma 2.2

- 2 vérins à vis Type 2
- Consoles pivotantes
- Moteur électrique

Schéma 1.1

- 1 vérin à vis Type 1
- Accouplement
- Lanterne d'assemblage
- Moteur électrique à variation de fréquence

Schéma 4.1

- 4 vérins à vis Type 1
- · Renvois d'angle
- Allonges élastiques
- Accouplements
- Moteur électrique

2.1 Tableau récapitulatif des formules utilisées

Abréviation	Dénomination	Unité	Formule
φ ^(•)	Angle d'hélice	0	$\varphi = \arctan[P_h / (d_2 * \pi)]$
'	Irréversibilité statique*: 2,4° < φ < 4,5°		
	(Irréversibilité dynamique : $\varphi < 2.4^{\circ}$)		
	Réversibilité : $\varphi > 4.5^{\circ}$		
η_{AnI}	Rendement total de installation de levage		
η_{HE}	Rendement Vérin à vis		
a	Accélération	m/s ²	a =v / (60*t)
As	Nombre de cycles en charge		
С	Charge dynamique de levage	kN	
Co	Charge statique de levage	kN	
d ₂	Diamètre sur flancs	mm	
ED	Durée de d'utilisation	%/h	ED = [Weg*As/(60*v)]*100%
F _{dyn}	Force axiale dynamique (= force de levage)	kN	
F _{stat}	Force axiale statique (= force de maintien)	kN	
HU	Levage/Tour	mm	HU= P _h / i
i	Transmission		
L _h	Durée de vie	h	$Lh=(C/F_{dyn})^{3*}10^{6}/(n_2*60)$
n ₁	Nombre de tours d'entraînement	min ⁻¹	
n ₂	Vitesse de réduction	min ⁻²	n ₂ = n1 / i
Р	Puissance	kW	P= F _{dyn} * v / (60*η)
P _h	Pas de l'axe fileté	mm	
pv-wert	Pression superficielle x Vitesse du mouvement de glissement	N/mm ² * m/min	
p _{zul}	Pression superficielle admissible	N/mm ²	
t	Temps	S	
T ₁	Couple d'entraînement	Nm	$T_1 = P^*9550 / n_1$
T ₂	Couple de réduction (= couple de la vis sans fin)	Nm	
T _A	Couple de démarrage	Nm	T _A ~ T ₁ *1,3
V	Vitesse de levage	m/min	v = n ₁ *Ph / i

^(*) Le blocage automatique ou irréversibilité peut être altéré par des vibrations et par des conditions de glissement optimales en cas de doute, prévoir un frein moteur

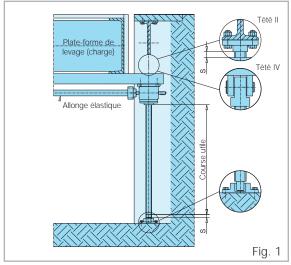
Index	
HE	Vérin à vis
Anl	Installation de levage
Ku	Vérin à vis à billes
Tr	Tige trapézoïdale

Exécution selon EN 1570, EN 280, EN 1756, EN 1493 (VBG 14)

Angle d'hélice :

2,4°< φ < 4,5° \Rightarrow Moteur avec couple de freinage simple

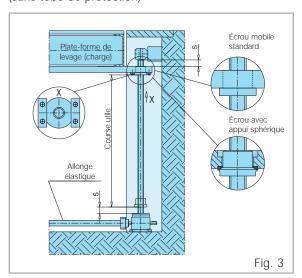
 $\phi > 4.5^{\circ}$ \Rightarrow Deux systèmes de freinage indépendants


Prescriptions pour estrades et studios BGV C1 (VBG70)

similaire à l'exécution selon VBG 14, mais le blocage automatique de la vis sans fin n'est pas obligatoire, dans la mesure où tous les composants transmetteurs de couple sont conçus pour une double charge nominale.

2.2 Exemples d'installations

2.2.1 Montage vertical



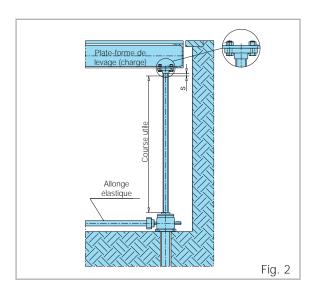
Montage conseillé pour les longues courses et les tiges longues

Charge en traction

Exécution: type 1

Avec mécanisme de levage embarqué (sans tube de protection)

Montage avec axe fileté soumis à un effort de compression, possible avec ou sans guidages additionnels

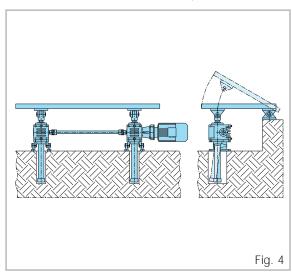

Dimensionnement de l'axe selon l'essai de charge 3 Euler et vitesse critique pour axe fileté

Exécution: type 2

Avec axe fileté tournant et écrou mobile

S = Distance de sécurité

Veuillez vous reporter au chapitre 7 "Accessoires" pour tous les composants complémentaires (bride d'assemblage, supports articulés, etc.).



Axe fileté soumis à un effort de compression, sans guidages latéraux

Dimensionnement de l'axe selon l'essai de charge 1 Euler

Exécution: type 1

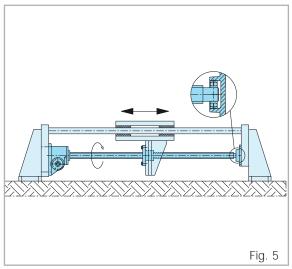
Avec axe fileté montant et tube de protection

Les mouvements oscillants exigent une fixation articulée

Dimensionnement de l'axe selon l'essai de charge 2 Euler

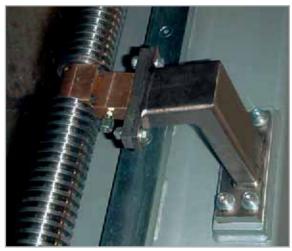
Exécution: type 1

Avec axe fileté montant, 2 bagues de guidage et tube


de protection

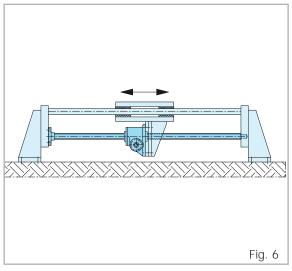
2.2 Exemples d'installations

2.2.2 Montage horizontal


Montage avec axe fileté soumis à des efforts de compression et de traction Avec quidages côté structure

Dimensionnement de l'axe selon l'essai de charge 3 Euler et vitesse critique pour axe fileté

Lorsqu'une précontrainte de traction est exercée sur l'axe ⇒ dimensionnement uniquement en vérifiant la vitesse critique


Exécution: type 2

Avec axe fileté tournant et écrou mobile

Palier intermédiaire d'un axe fileté de 12 m

En version standard, les axes filetés peuvent être fabriqués en une partie, limitée à 6 m de long (3 m pour les axes filetés fabriqués dans un matériau anticorrosion). Les longueurs au-delà de ces limites sont réalisées en plusieurs parties et peuvent ainsi être installées facilement côté structure.

Montage avec axe fileté soumis à des efforts de compression et de traction

Avec guidages côté structure

Dimensionnement de l'axe selon l'essai de charge 2 Euler, si le guidage de l'axe fileté n'est pas suffisant. Essai de charge 3 Euler, si le guidage de l'axe fileté est suffisant

Exécution: type 1

Avec guidage de l'axe fileté et arbre de commande à

déplacement linéaire

Écrou mobile spécial

Fig. 8

En cas de dépassement de la vitesse critique (concernant uniquement le type 2 = axe fileté tournant), il convient de dimensionner suffisamment les axes filetés. A cette fin, utiliser les paliers intermédiaires et écrous mobiles (voir photos) fabriqués spécialement dans notre usine.

2.3 Durée de vie L_h

Le calcul et la construction des vérins à vis et les mécanisme de levage "grande vitesse" Pfaff-Silberblau sont basés sur l'expérience de nombreuses années; ces composants bénéficient par conséquent d'une longue durée de vie, à condition de respecter les prescriptions et conseils de notre manuel de service.

Vis trapézoïdale		Vis à billes	Palier	
Vérin Tr et S	Vérin Ku	rapport N ou L	axial et radial	
valeurs indicatives uniquement, car le	Calcul:	Denture vis sans fin :	Calcul selon DIN ou selon	
calcul n'est pas réalisable	$L_h = (C/F_{dyn})^{3*}10^6/(n_2^*60)$	Vérin à vis standard SHE et MERKUR	les indications fournies par	
La pression superficielle et la vitesse du		Valeur indicatives selon DIN3996-D	les fabricants de paliers à	
mouvement de glissement		Pour les vérins à vis "hautes performan	roulements	
(valeur pv, p _{zul}) sont indispensables		DIN 3996-C denture conique :		
pour le calcul		Mécanismes de levage :		
regraissage fiable		"grande vitesse" SHG,		
montage optimal		L _h = résistance à la fatigue		

Les valeurs de charge maxi indiquées dans le catalogue (tableaux des indications à fournir) prévoient au moins 500 heures de service (durée de fonctionnement) comme valeur indicative de la durée de vie.

2.4 Directives pour l'application

2.4.1 Protection contre l'encrassement

- Étanchéité de série de toutes les gammes, grâce à des joints étanches sur les arbres d'entraînement
- Carter fermé, grâce à des joints étanches supplémentaires pour les séries HSE et SHG
- Axe fileté du type de construction 1 protégé par un tube

Option Protection des vérins :

- Soufflets fabriqués à partir de différents matériaux, pour la protection contre l'encrassement extérieur ainsi que lors d'une utilisation à l'extérieur (dans une zone humide)
- Soufflets spirales en acier pour l'utilisation dans des conditions difficiles (copeaux, éclats de soudage)

Exécutions spéciales :

Exécutions spéciales réalisables sur demande, par ex. en cas d'utilisation en immersion ou à des températures élevées

2.4.2 Protection contre la corrosion

Carter en aluminium résistant à la corrosion pour les séries :

SHE Dimensions 0,5 et 1.1

MERKUR Dimensions M0, M1 et M2

HSE Dimensions 32 et 36.1

SHG Dimension G25

Traitement de surface pour toutes les autres dimensions :

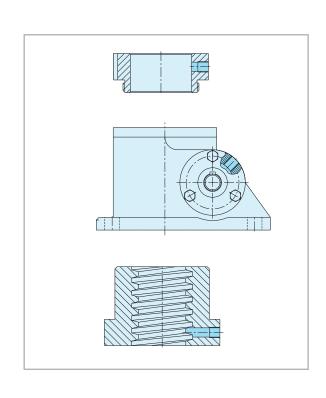
- Carters SHE et HSE avec une peinture de base en série
- · Carters phosphatés pour MERKUR et SHG

Option – Protection contre la corrosion dans une exécution spéciale : toutes les séries livrables :

- protégées par des peintures spéciales
- avec des tiges et des têtes de vis dans les matériaux 1.4305, 1.4301, 1.4571
- avec des arbres de vis sans fin en matériau résistant à la corrosion
- Série SHE dans des matériaux complètement résistants à la corrosion

Protection anticorrosion par traitement de surface : Toutes les séries :

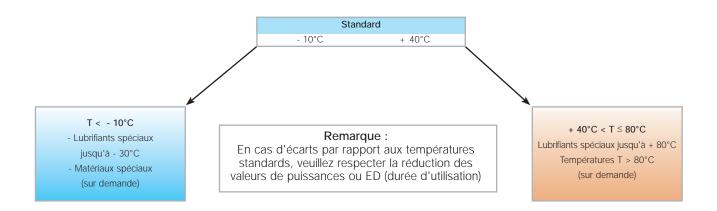
- Tiges nitrurées (ténifer)
- (nitruration au bain de sels)
- · Arbre d'entraînement chromé dur


SHG G25 (carter en aluminium)

2.4 Directives pour l'application

2.4.3 Possibilité de regraissage

Si l'axe fileté ou les points de graissage du carter sont difficilement accessibles, nous conseillons d'utiliser des installations centrales de graissage ou des graisseurs automatiques (voir chapitre 7.8). A cette fin, nous pouvons équiper nos composants avec les raccordements filetés correspondants.


Série SHE et MERKUR

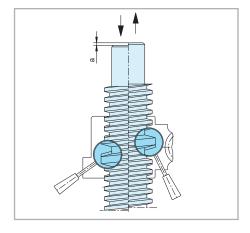
Type de construction	Point de graissage			
Type 1	Bague de guidage, tube de protection,			
	carter (denture)			
Type 2	Écrou mobile, carter (denture)			

Série HSE et SHG

Type de construction	Point de graissage
Type 1	Bague de guidage, tube de protection
Type 2	Écrou mobile

2.5 Températures ambiantes

11


www.pfaff-silberblau.com

2.6 Précision

2.6.1 Jeu axial "a"

Si la charge n'agit que dans une direction, le jeu axial n'a aucune influence sur l'exactitude du positionnement, étant donné que les flancs de filets sont toujours en appui.

Axe à filet trapézoïdal ou axe à filet au pas d'artilleur	Vérin à vis à billes
Standard	
0,1 mm ≤ a ≤ 0,3 mm en fonction des	
dimensions	Écrou à bride individuel a ≤ 0,05 mm
Exécution modifiée :	Précontrainte par tri des billes
Un jeu axial réglable	0,01 mm ≤ a ≤ 0,03 mm
	Double écrou précontraint a ≤ 0,01 mm

2.6.2 Jeu latéral "b"

Standard

Le jeu latéral "b" existe seulement sur type 1 et est situé entre la bague de guidage et le diamètre extérieur de l'axe fileté. Il est d'environ 0,2 mm et provoque en fonction de la longueur de la course une déviation "b" de l'axe, que l'on peut calculer linéairement. Une réduction du jeu "b" peut être obtenue en utilisant une 2e bague de guidage.

Exécution spéciale

2^e bague de guidage avec jeu réduit et rectification supplémentaire du matériau utilisé pour les axes.

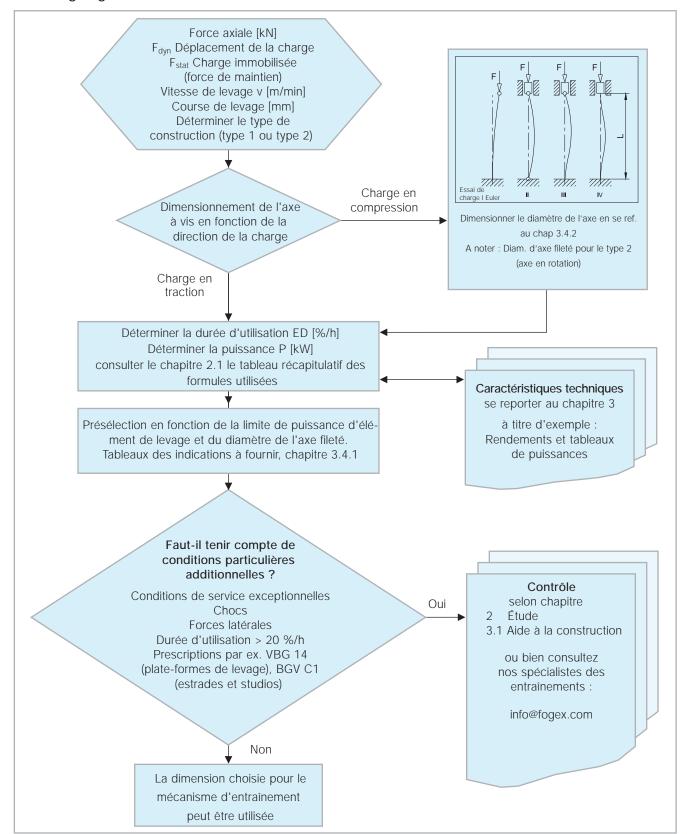
2.6.3 Jeu de denture

Le jeu de denture de la vis sans fin varie à l'état neuf entre 0,1 et 0,3 mm, et augmentera avec l'usure, en fonction des dimensions et de l'entraxe.

Le jeu de denture de la vis sans fin varie entre 0,05 et 0,1 mm et demeure constant pendant toute la durée de vie.

2.6.4 Ecart de pas de l'axe fileté

2.7 Applications spéciales


Nous consulter : info@fogex.com

13

2.8 Dimensionnement des vérins à vis

2.8.1 Organigramme

2.8.2 Exemple

2.8 Dimensionnement des vérins à vis

2.0 Dimensionnement des venns à vis

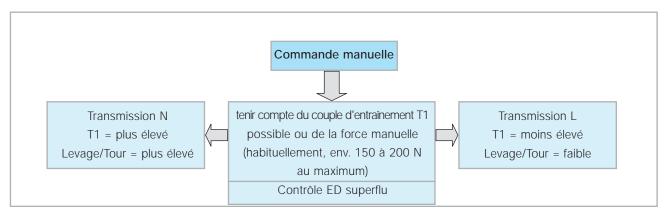
Entraı̂nement individuel avec moteur Force axiale requise F_{dyn} ____ 20 kN

Essai de charge 3 Euler

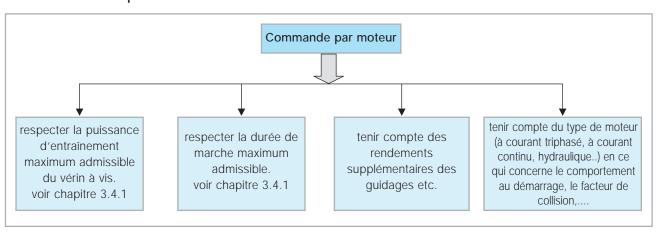
Vitesse de levage requise v $_$ 1,9 m/min

Cycles de charge/heure _____ 10

Guidages prévus _____


Déplacement par cycle de charge

Course souhaitée _____ 1 200 mm Exécution sélectionnée ____ voir chapitre 3.2


Construction du type 1 (axe de levage)

Vis sans fin	du diagramme de flambage	Tr 50x9					
Présélection du vérin à vis	Chapitre 3.4.1	HSE 63.1					
Puissance d'entraînement requise	2.0 kW	en fonction du tableau des	Dorf in 2.2 kW				
. aleeanee a entrament requies	2,0 100	indications à fournir, chap. 3.4.1	Perf $< p_{zul} = 2.3 \text{ kW}$				
Durée de marche 11%/h		Formule voir chap. 2.1	$ED_{vorh} < ED_{zul} = 20\%/h$				
moteur sélectionné	2,2 kW, 1 500 min ⁻¹						
Dimension sélectionnée HSE 63.1 correcte							

2.8.3 Commande manuelle des vérins à vis

2.8.4 Commande par moteur des vérins à vis

Exécution du moteur

couple de démarrage requis	T _A ~ 1,3 x T _N
Vitesses de levage élevées, servocommande, par ex.	⇒ masses d'inertie et durée d'accélération
	déterminantes pour le dimensionnement

www.pfaff-silberblau.com

15

2.8 Dimensionnement des vérins à vis

2.8.5 Précision de déplacement et d'arrêt des vérins

La précision de déplacement dépend essentiellement de l'exactitude de l'axe fileté (voir le chapitre 2.6). Dans le cas du réglage par moteur, la précision de positionnement est influencée par la commande électrique, l'excitation du frein et la précision de réglage des interrupteurs de fin de course.

En cas d'utilisation d'un moteur, ne pas terminer la course sur les butées fixes !

2.9 Caractéristiques de fonctionnement admissibles

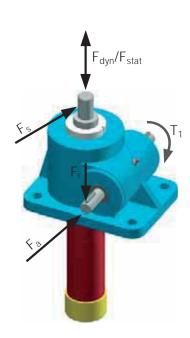
2.9.1 Information générales

Force latérale appliquée sur le vérin

F,

valeurs admissibles, voir les diagrammes au chapitre 3.4.8

Puissance d'entraînement


 $P_{\text{HE}} < p_{\text{zul}}$

P_{HE} = F_{dyn}*v/(60*m_{HE})
Calcul, voir chapitre 2.1
Conception standard pour une
durée d'utilisation
ED de 20 %/heure et 20°C
ou une durée d'utilisation
ED de 10 %/heure et 20°C

Couple d'entraînement

 $T_1 < T_{zul}$

 $T_1 = P_{HE}^*9550/n_1$ Calcul, voir chapitre 2.1

Force de compression/de traction dynamique et statique

F_{dyn}/F_{stat}

Dimensionnement en fonction du tableau des indications à fournir chapitre 3.4.1, ou diagrammes de flambage au chapitre 3.4.2

Force axiale exercée sur l'arbre d'entraînement

 F_a

aucune force axiale admissible.
(observer aussi ce point pour le montage des accouplements et des arbres articulés)

Force radiale exercée sur l'arbre d'entraînement

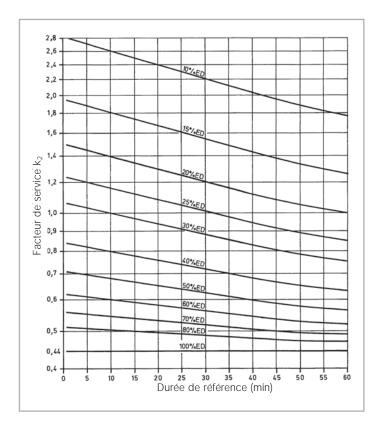
 F_r

valeurs admissibles, voir chapitre 3.4.9

2.9 Caractéristiques de fonctionnement admissibles

2.9.2 Facteurs de service

Vérin à vis standard SHE et MERKUR


Réduction de la durée d'utilisation ED en fonction de la température ambiante

Température ambiante [°C]		50°	60°	70°	80°
pour les composants de levage (SHE et MERKUR)					
durée d'utilisation maximale possible	%/h	18	15	10	5
duree d dillisation maximale possible	%/10 min	36	30	20	10
Attention : Température de service maximale HE = 80°C					

Vérin à vis "hautes performances" HSE

Dimension HSE	32	36.1	50.1	63.1	80.1
Coefficient de puissance k ₁ [kW]	0,40	0,64	1,0	1,62	2,43

Dimension HSE	100.1	125.1	200.1
Coefficient de puissance k ₁ [kW]	3,30	5,41	13,30

Coefficient de puissance k₁

Le coefficient de puissance k_1 nous donne les pertes en puissance (quantité de chaleur) que le HSE peut dissiper pour une durée d'utilisation ED de 20 % / heure et une température ambiante de 20°C lorsqu'il n'est pas équipé d'un refroidissement forcé. La température des vérins se stabilise dans ce cas à environ 80°C.

$$p_{zul} = k_1^* k_2^* k_3 / (1 - \eta_{HE})$$

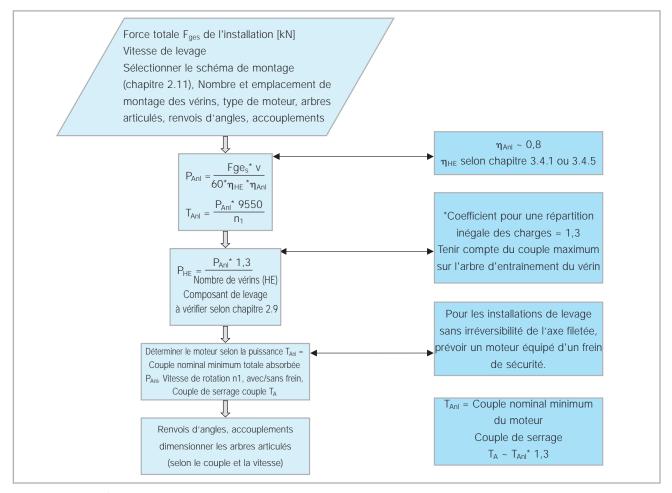
Coefficient pour la durée d'utilisation $\,k_2\,$

Le coefficient pour la durée d'utilisation k_2 est la valeur nécessaire pour corriger (augmenter ou diminuer) la puissance d'entraı̂nement admissible Padm , lorsque la durée d'utilisation ED n'est pas de 20 % par heure. Pour une durée d'utilisation de 20 %/h ou de 30 % rapportée à 10 minutes, k_2 =1. Pour des durées d'utilisation différentes de la normale, le coefficient k_2 peut être déterminé à partir du diagramme ci-contre.

Coefficient de température k₃

Pour une température normale de 20°C, le coefficient de température est de 1.

Pour d'autres valeurs de température ambiante (= ϑ), le coefficient se calcule comme suit :


$$k_3 = \frac{80 - \vartheta}{60}$$

Les coefficients k_1 , k_2 et k_3 sont spécialement adaptés à l'emploi de vérins à vis "hautes performances". Leur utilisation n'est pas autorisée pour les vérins standards et les vérins à vis "grande vitesse". **FOGEX**

Conception

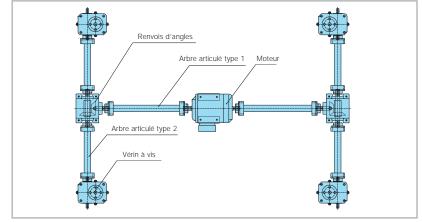
2.10 Installations de levage

2.10.1 Méthode de sélection

2.10.2 Exemple

Caractéristiques techniques :

 $F_{ges} = 60 \text{ kN (dyn. et stat.)}$

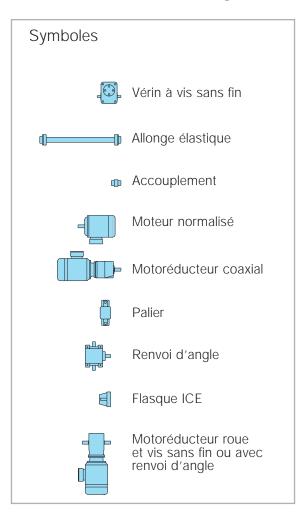

v = 1.9 m/min

ED = 20 %/h (pourcentage d'utilisation)

Schéma 4.1

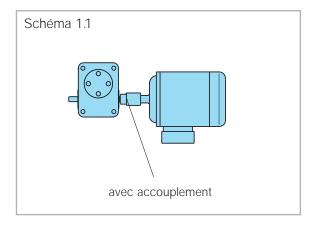
Moteur à courant triphasé

Engrenages coniques i = 1:1

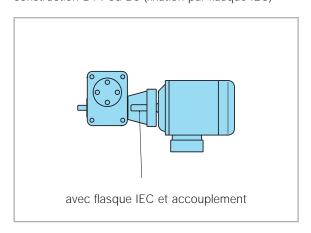


$F_{HE} = 60 \text{ kN/4*1.3}$	Présélection de vérin à vis sans fin selon chapitre 2.8	➡HSE 63.1, Tr50x9,
$F_{HE} = 19,5 \text{ kN}$	1 Toodiootion do Totalia de No dano ini obton diapatro 2.0	η_{HE} = 0,311; P_{HE} = 2,0 kW, η_{Anl} ~ 0,8
$P_{Anl} = 7,63 \text{ kW}$	⇒ Choix du moteur 7,5 kW, n ₁ = 1 500 min ⁻¹	➡ Moteur 132 M/4
$T_{Anl} = 49 \text{ Nm}$	⇒ T _{Keg} = 25 Nm, i = 1 :1 (chapitre 4)	⇒ renvois d'angles K 11.13
	$T_{GW1} = 25$ Nm, $n_1 = 1500$ min ⁻¹ ; respecter la longueur maxi selon n_{krit} (chapitre 6)	⇒ arbre articulé ZR 28/38
	$T_{GW2} = 12,5$ Nm, $n_1 = 1500$ min ⁻¹ ; respecter la longueur maxi selon n_{krit} (chapitre 6)	⇒ arbre articulé ZR 24/28

2.11 Schémas de montage


Les vérins à vis et mécanismes de levage "grande vitesse" Pfaff-Silberblau peuvent être utilisés comme entraînements individuels (voir chapitre 2.11.1) ou être combinés entre eux (voir chapitre 2.11.2). Les installations à plusieurs vérins, à synchronisation mécanique, sont entraînées par un seul moteur, ce qui les rend insensibles à une répartition inégale des charges et à l'incidence négative de celle-ci sur le synchronisme des composants de levage. Les installations à plusieurs vérins, à synchronisation électrique, nécessitent très peu d'éléments d'assemblage mécaniques (stabilité de fonctionnement), mais exigent des commandes plus importantes. Le dimensionnement adéquat des moteurs de commande, en connexion avec un système de régulation maître-esclave permet également d'obtenir le synchronisme exact des entraînements. Après avoir trouvé le schéma le plus favorable pour votre installation, vous pouvez déterminer exactement les renvois d'angles, les accouplements et les arbres. L'utilisation de paliers intermédiaires permet de multiplier la longueur des arbres d'assemblage, en fonction de la vitesse de rotation.

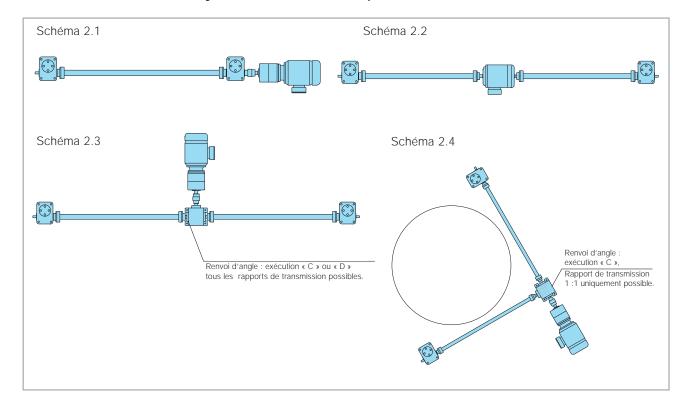
Remarque:

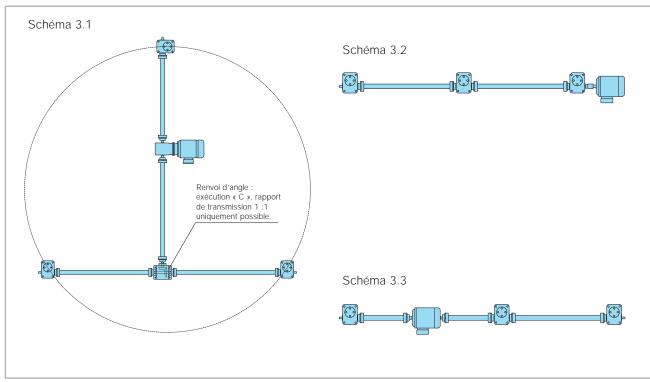

L'emploi de vérins à vis "grande vitesse" permet de supprimer les renvois d'angles si le montage de l'ensemble est favorable.

2.11.1 Entraînement individuel

Vérin à vis – accouplement – moteur, forme de construction B3 (fixation pied)

Vérin à vis – accouplement – flasque IEC, forme de construction B14 ou B5 (fixation par flasque IEC)

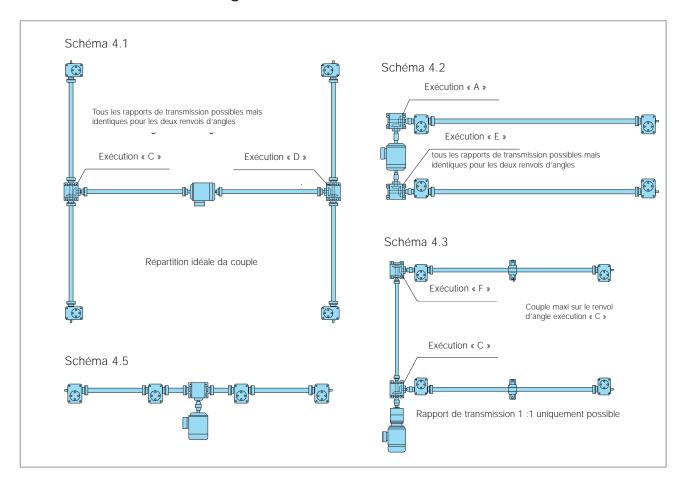


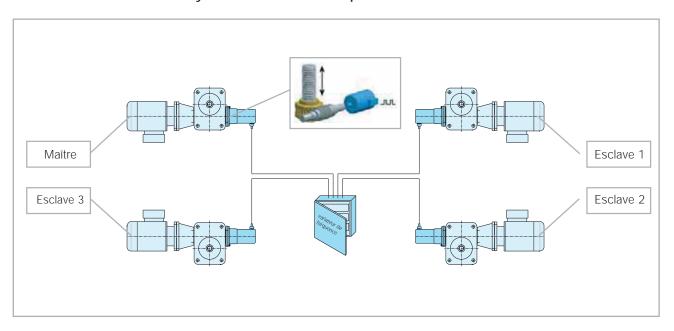


2.11 Schémas de montage

2.11.2 Installation à plusieurs vérins

2.11.2.1 Installation avec synchronisation mécanique





2.11 Schémas de montage

2.11.2.2 Installation avec synchronisation électrique

www.pfaff-silberblau.com 21

3.1 Aide à la construction

Nos entraînements sont destinés à des usages multiples, comme vous pouvez le constater à partir du large éventail des possibilités d'application. De plus, nous réalisons des solutions adaptées à vos exigences personnelles. En fonction des cas d'application, en fonction des fonctionnalités souhaitées, il en résulte des solutions de type standard, modifié ou spécial. Standardisé autant que possible, adapté autant que nécessaire aux tâches à remplir. Si les solutions proposées dans ce catalogue ne répondent pas exactement à vos cas d'application, n'hésitez pas à consulter votre technicien-conseil.

3.1.1 Exigences/Solutions proposées

Pour vous permettre de vous repérer plus rapidement, nous avons regroupé toutes les applications sous forme de tableau présentant à la fois les exigences et les solutions proposées.

Votre cas d'application

Notre solution

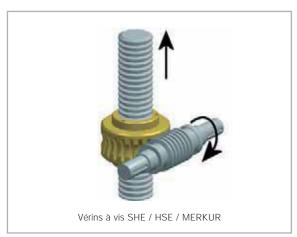
- Exigences posées aux éléments de levage
- Exécution spéciale et caractéristiques
- Solutions proposées et remarques

3.1.2 Construction

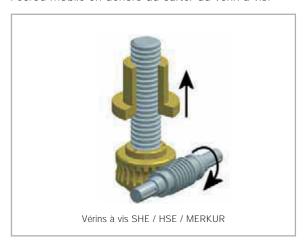
Votre cas d'application	Symbole	Notre solution
 guidages impossibles côté construction impossible d'exclure des forces exercées latéralement Forces de rappel résultant du mouvement de pivotement 	9 1	 Deuxième bague de guidage augmente la stabilité et empêche la compression inadmissible dans l'axe fileté en ce qui concerne Tête articulée logement articulé du vérin
		logement articulé de l'écrou mobile prévoir une suspension articulée ou sphérique de l'écrou A noter : Il convient d'éviter des charges latérales, car ces dernières réduisent la durée de vie de l'écrou porteur
 Vérin à vis sous forme d'entraînement individuel, sans guidages côté construction immobilisation en rotation non réalisable côté construction avec/sans limiteur de course 	1 Line	Immobilisation en rotation version standard via un tube carré ou version spéciale via une clavette (si les forces de levage sont de faible importance)
 Sécurité d'attaque mécanique exigée avec/sans limiteur de course 		Butée mécanique, type de construction 1. Bout d'arbre avec butée d'arrêt mécanique en tant que limitation d'urgence. Tube de protection avec fins de course rapportés
 Mouvements de pivotement et de basculement avec des vérins à vis avec/sans limiteur de course 		Exécution avec rotule Fixer les éléments moteurs en deux points de façon mobile. Ceci peut être réalisé par une tête IV des deux côtés, ou par une tête articulée. Il convient de limiter autant que possible les mouvements de flexion résultant du mouvement pivotant, en prévoyant des constructions articulées à faible friction.

Votre cas d'application	Symbole	Notre solution
jeu axial invariable constant exigé dans le filet trapézoïdal		Exécution avec réglage du jeu Exécution spéciale avec double écrou précontraint, le jeu axial peut être rattrapé ultérieurement par le couvercle du carter. Exécution spéc. avec double écrou mobile précontraint. jeu axial rattrapable ultérieure- ment. A noter : Nécessaire uniquement en cas d'inversion de charge (traction et pres- sion). En cas d'utilisation de vérins à vis à billes, un rattrapage n'est pas nécessaire
Sécurité de service particulièrement élevée exigée limiter les coûts en cas de rupture d'écrou		Écrou de sécurité court Écrou porteur avec écrou de sécurité court, surveillance visuelle de l'usure. A noter : Surveillance uniquement pos- sible pour une seule direction de la charge
Protection des personnes et respect des prescription en matière de prévention des accidents VBG 14 (personnes se trouvant sous la charge levée/plateformes de travail) exigés ou conception selon la prescription relative aux estrades et des scènes de théatres BGV C1 (VBG 70)		Écrou de sécurité long Pour l'utilisation de vérins à vis sans fin sur des scenes de theatre réglementation BGV C1 (VBG 70), plate-formes (réglementations VBG 14) ou dans installations présentant un risque pour les personnes, les composants de levage sont conçus en conformité avec les prescriptions les plus récentes ; entre autres, le dispositif de sécurité empêchant une chute (tiges autobloquantes et/ou reins mé caniques de sécurité dans le dispositif d'entraînement) et le dispositif de synchronisation peuvent être complétés par des composants supplémentaires en cas de besoin.
Course importante pour un encombrement réduit		Exécution télescopique Un système de vérin à vis fileté à droite/à nécessite pour une course élevée seulement une demi-longueur de tube de protection (course x 0,5+30 mm env.)
Longueurs de course importantes et cas de compression défavorable, pour une faible force de levage	-	Axes filetés renforcés pour le type de construction 2 réalisable sous certaines conditions pour le type de construction 1
A l'arrêt, pas de descente autonome de la charge	F	Axes à un seul filet trapézoïdal Tr (par ex. : Tr 40x7)
charges élevées pour un même diamètre de vérin	1	Axe à filet au pas d'artilleur S
vitesse de levage élevée exigée Iternative économique aux tiges à circulation à billes	P=xx	Axes à filets trapézoïdaux multiples Tr Rendement (Tr > 50 %) (par ex. :vérin à deux filets Tr 40x14 P7) pas de blocage automatique -> frein moteur absolument nécessaire
Blocage automatique depuis le mouvement Frein moteur non souhaité	P=?	Axe à un seul filet trapézoïdal avec pas spécial * pas de frein moteur supplémentaire nécessaire (par ex. : Tr 40x5)
 Vitesse de levage élevée nécessaire faible jeu axial (≤ 0,03 mm) précision de pas élevée P300 ≤ 0,0 mm faible friction nécessaire 	E	Vérin à vis à billes Ku ou à rouleaux satellites Pl • Rendement η _{Ku} '90 % η _{Pl} '65 % • pas de blocage automatique -> frein moteur absolument nécessaire

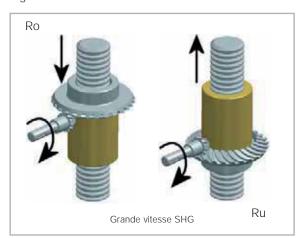
www.pfaff-silberblau.com 23


3.1 Aide à la construction

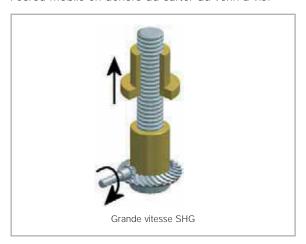
Votre cas d'application	Symbole	Notre solution
 Positionnement Mesure de la course 	,n.	Montage rapporté du codeur A la demande, toutes les marques courantes sont montées directement sur le vérin à vis - Codeur d'angle/transmetteur incrémental - Codeur absolu SSI ou module Profibus DP
Seul un logement réduit est disponible pour le montage	100	Arbre creux Fixation du moteur par l'intermédiaire de l'arbre creux et du flasque IEC
Le moteur doit être fixé directement sur le composant de levage		Lanterne moteur
Il faut réaliser des mouvements de pivotement pour certains composants		Support articulé complet avec des consoles Plaque articulée
Une protection active contre les poussières, l'encrassement ou l'humidité est nécessaire		Protection du vérin Soufflets Soufflets spirales en acier
Une fixation variable de la construction est souhaitée	I II III IV	Têtes de vis Tête I = embout lisse Tête II = bride (plateau) Tête III = embout fileté Tête IV = chape Tête GK = tête à fourche Option = tête rotulée
Commande manuelle ou entraînement manuel exigé		Volant Utile uniquement comme entraînement auxiliaire ou pour effectuer de faibles mouvements de levage Selon DIN 950, adapté à chaque vérin à vis, alésage et rainure effectués


3.2 Type 1 – Type 2

Type 1 : axe fileté montant, roue bronze avec filetage intérieur


Le mouvement d'entraînement est appliqué sur la roue bronze avec filetage intérieur, par l'intermédiaire de la vis sans fin. Le mouvement de levage s'effectue par l'immobilisation en rotation de l'axe filetée, soit intégrée dans le vérin soit intégrée dans la structure à déplacer

Type 2 : -axe fileté tournant; filetage intégré dans l'écrou mobile en dehors du carter du vérin à vis.


Le mouvement d'entraînement est appliqué sur la roue tangente, par l'intermédiaire de la vis sans fin. Le mouvement de levage s'effectue par l'immobilisation en rotation de l'écrou de levage par l'intermédiaire de la structure à déplacer.

Type 1 : axe fileté montant, pignon conique avec filetage intérieur

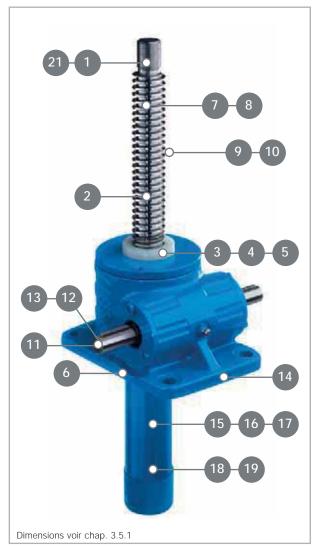
Le mouvement d'entraînement est appliqué sur le pignon conique avec filetage intérieur, par l'intermédiaire du pignon de commande. Le mouvement de levage s'effectue par l'immobilisation en rotation de l'axe filetée, soit intégrée dans le vérin soit intégrée dans la structure à déplacer. La position de la roue conique (Ro ou Ru) détermine le sens de rotation. (Ro = Roue en haut / Ru = Roue en bas)

Type 2 : axe fileté tournant; filetage intégré dans l'écrou mobile en dehors du carter du vérin à vis.

Le mouvement d'entraînement est appliqué sur la roue conique, par l'intermédiaire du pignon de commande. Mouvement de rotation résultant de l'assemblage solidaire de l'axe dans la roue conique. Le mouvement de levage s'effectue par l'immobilisation en rotation de l'écrou de levage par l'intermédiaire de la structure à déplacer. La position de la roue conique (Ro = Roue en haut / Ru = Roue en bas) détermine le sens de rotation (voir construction 1).

Remarque: Standard = filetage à droite;

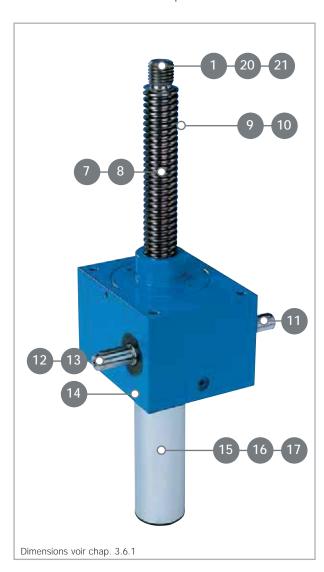
Déplacement axial (direction);


Sens de rotation de l'arbre d'entraînement

3.3 Formes de construction

3.3.1 Série SHE Type 1

Type 1 (tige filetée montante) – construction robuste, pour l'utilisation à des vitesses faibles ou moyennes


Tailles:

14 dimensions différentes forces de levage de 5 à 2 000 kN Nombre de tours d'entraînement jusqu'à 1 500 min⁻¹

- tige trapézoïdale autobloquante
- version lubrifiée à la graisse
- Engrenage à vis sans fin à deux rapports ("N" normal et "L" lent)
- arbre de vis sans fin cémenté, trempé et rectifié

3.3.2 Série MERKUR Type 1

Type 1 (tige filetée montante) – alternative aux vérins à vis SHE de construction cubique.

Tailles:

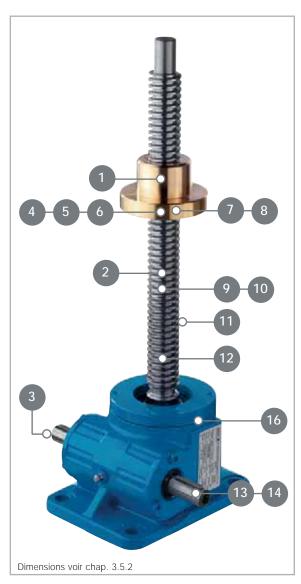
9 dimensions différentes forces de levage de 2,5 à 500 kN Nombre de tours d'entraînement jusqu'à 1 500 min⁻¹

- l'usinage sur toutes les faces facilite l'alignement
- construction identique à celles des fabricants européens de vérins à vis de forme cubique
- tige trapézoïdale autobloquante
- version lubrifiée à la graisse
- Engrenage à vis sans fin à deux rapports ("N" normal et "L" lent)

3.3 Formes de construction

N°	Symbole	Série SHE Type1	Série MERKUR Type1	N°	Symbole	Série SHE Type1	Série MERKUR Type1
1		•	•	12		•	•
2		•		13	, r	•	•
3		•		14		•	•
4	an an	•	•	15		•	•
5		•	•	16		•	•
6	E.	•		17		•	•
7		•	•	18		•	•
8	P=xx P=?	•	•	19	la la	•	
9		•		20			•
10		•	•	21		•	•
11	-	•	•				

[•] SHE et MERKUR l'exécution standard • Options et accessoires


27

3.3 Formes de construction

3.3.3 Série SHE Type 2

Type 2 (tige filetée tournante) – construction robuste, pour l'utilisation à des vitesses faibles ou moyennes

Tailles:

14 dimensions différentes forces de levage de 5 à 2 000 kN Nombre de tours d'entraînement jusqu'à 1 500 min⁻¹

- tige trapézoïdale autobloquante
- version lubrifiée à la graisse
- Engrenage à vis sans fin à deux rapports ("N" normal et "L" lent)
- arbre de vis sans fin cémenté, trempé et rectifié

3.3.4 Série MERKUR Type 2

Type 2 (tige filetée tournante) – alternative aux vérins à vis SHE de construction cubique

Tailles:

9 dimensions différentes forces de levage de 2,5 à 500 kN Nombre de tours d'entraînement jusqu'à 1 500 min⁻¹

- l'usinage sur toutes les faces facilite le montage
- construction identique à celles des fabricants européens de vérins à vis de forme cubique
- tige trapézoïdale autobloquante
- version lubrifiée à la graisse
- Engrenage à vis sans fin à deux rapports ("N" normal et "L" lent)

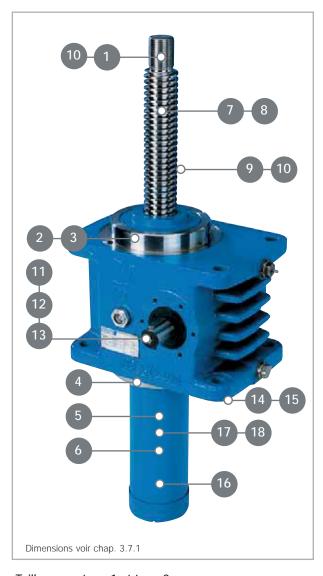
3.3 Formes de construction

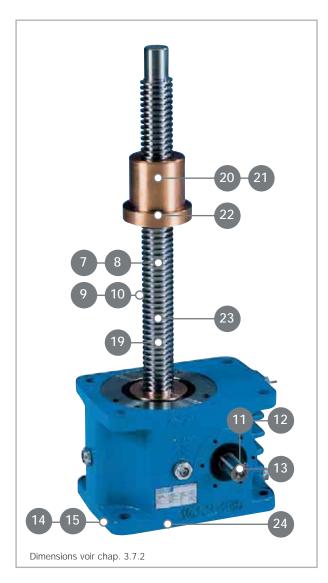
N°	Symbole	Série SHE Type2	Série MERKUR Type2
1		•	•
2		•	•
3	-	•	•
4		•	•
5		•	•
6		•	•
7		•	•
8		•	•

N°	Symbole	Série SHE Type 2	Série MERKUR Type2
9		•	
10	P=xx P=?	•	•
11		•	•
12	→	•	•
13	000	•	•
14	.AA.	•	•
15		•	•
16		•	•

[•] SHE et MERKUR l'exécution standard

[•] Options et accessoires




3.3 Formes de construction

3.3.5 Série HSE Type 1

3.3.6 Série HSE Type 2

Type 1 (tige filetée montante) et type 2 (tige filetée tournante) – construction brevetée avec répartition des zones de chaleurs, pour l'utilisation à des vitesses moyennes et élevées.

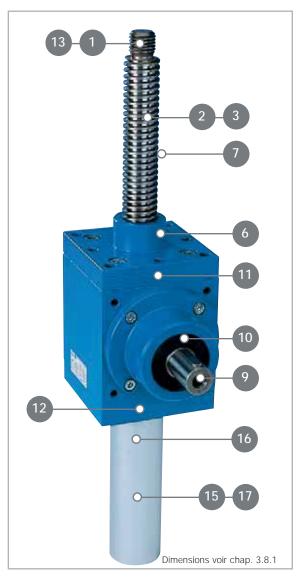
Tailles pour type 1 et type 2 :

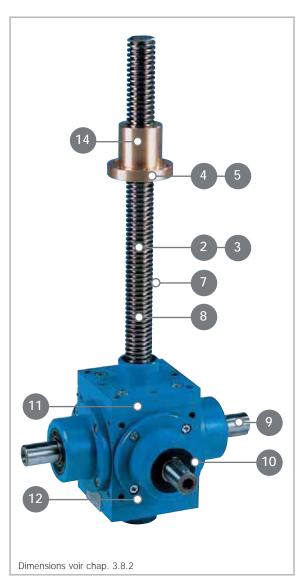
8 dimensions différentes avec forces le levage de 5 à 1 000 kN Nombre de tours d'entraı̂nement jusqu'à 3 000 $\rm min^{-1}$

- tige trapézïodale autobloquante
- circuits de lubrification séparés : Tige filetée (Tr) à lubrification par graisse et couple roue et vis sans fin à lubrification par bain d'huile
- couple roue et vis sans fin deux rapports ("N" normal et "L" lent)
- arbre de vis sans fin trempé et rectifié

N°	Symbole	Série HSE Type1	Série HSE Type2	N°	Symbole	Série HSE Type1	Série HSE Type2
1		•		13	-	•	•
2		•		14	E.	•	•
3	The state of the s	•		15		•	•
4		•		16		•	
5		•		17		•	
6		•		18	te de	•	
7		•	•	19	→		•
8	P=xx P=?	•	•	20			•
9		•	•	21	•		•
10		•	•	22			•
11	000 100 100 100 100 100 100 100 100 100	•	•	23			•
12	, an	•	•	24	***		•

[•] HSE type 1 et type 2 exécution standard • Options et accessoires




3.3 Formes de construction

3.3.7 Série SHG Type 1

3.3.8 Série SHG Type 2

Type 1 (tige filetée montante) et type 2 (tige filetée tournante) – renvois d'angle à denture hélicoïdale pour vitesses de levage élevées, hautes performances et longue durée de vie.

Tailles pour type 1 et type 2 :

4 dimensions différentes avec forces de levage de 15 à 90 kN Vitesses de levage jusqu'à 19 m/min Nombre de tours d'entraînement jusqu'à 3 000 min⁻¹

- tige trapézïodale autobloquante
- circuits de lubrification séparés : Tige filetée (Tr) à lubrification par graisse et renvois d'angle à lubrification par bain d'huile
- renvois d'angle en deux paliers de transmission (2 :1 et 3 :1 selon les exigences)
- denture à trempe et rectifiée

3.3 Formes de construction

N°	Symbole	Série Série SHG Type1 SHG Type2
1	1919	•
2		•
3	E	
4		•
5		•
6		•
7		•

- SHG l'exécution standard
- Options et accessoires

3.4 Caractéristiques techniques

3.4.1 Tableau de sélection

3.4.1.1 Vérins à vis SHE

Taille		0,5	1.1 ⁴⁾	2	3.1 ⁴⁾	5.1 ⁴⁾	(10)	15.1 ⁴⁾
Force de levage maxi	[kN]	5/5	15/15	20/20	30/45	50/75		100/150
Force de traction maxi	[kN]	5/5	10/10	19/19	30/45	50/75		99/99
Tige filetée trapézoïdal Tr1)		18x6	24x5	26x6,28	30x6	40x7		60x12
Rapport N		10 :1	5 :1	6 :1	6 :1	6 :1		7 2/3 :1
Course par tour pour rapport N	[mm/t]	0,60	1,0	1,047	1,0	1,167		1,565
Rapport L		20 :1	20 :1	24 :1	24 :1	24 :1		24 :1
Course par tour pour rapport L	[mm/t]	0,30	0,25	0,262	0,25	0,292	sur demande	0,50
Puissance maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 20 % par h	[kW]	0,17	0,4	0,5	0,65	1,15		2,7
Puissance maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 10 % par h	[kW]	0,25	0,6	0,75	1,25	1,9		3,85
Rendement total Rapport N	[%]	31	30	31	27	24		27
Rendement total Rapport L	[%]	24	23	18	19	16		17
Rendement de l'axe fileté	[%]	54	41	45	40	36,5		39,5
Couple-Puissance-Vitesse avec une durée d'ut. ED de 20 %/h, à 20°C				voir tablea	aux de puissance	es 3.4.3.1		
Couple sur l'axe fileté sous force de levage maxi	[Nm]	8,8	29,1	44	60	153		702
Couple maxi admissible sur l'arbre de commande	[Nm]	12	29,4	36	46,5	92	sur demande	195
Longueur maxi admissible de l'axe fileté pour charge en compression	[mm]			voir diagra	ammes de flamb	age 3.4.2		
Matériau du carter		G-AIS	SiCu4			GGG		
Poids du vérin sans course et sans tube de protection	[kg]	1,2	3,0	7,3	7,3	16,2		26,5
Poids de l'axe fileté par 100 mm de course	[kg]	0,14	0,26	0,32	0,45	0,82		1,79
Quantité de lubrifiant dans le carter	[kg]	0,05	0,1	0,15	0,2	0,35		0,9
Moment d'inertie J Rapport N type 1 ³⁾	[kg cm ²]	0,095	0,383	0,651	0,780	2,234	sur demande	5,256
Moment d'inertie J ³⁾ Rapport N type 2 ³⁾	[kg cm ²]	0,100	0,390	0,657	0,792	2,273		5,356
Moment d'inertie J ³⁾ Rapport L type 1	[kg cm ²]	0,089	0,269	0,459	0,558	1,696		4,081
Moment d'inertie J ³⁾ Rapport L type 2	[kg cm ²]	0,089	0,275	0,460	0,558	1,699		4,091

Dimensions Type 1 - chap. 3.5.1/ Type 2 - chap. 3.5.2

¹⁾ Pour les vérins vis à billes Ku, voir chapitre 3.4.7

²⁾ Valeurs maxi admissibles pour Type 1 et vérin avec tige filetée trapézoïdal Tr. Pour l'emploi de Type 2 ou du vérin vérins vis à billes Ku, des valeurs plus élevées sont possibles

³⁾ se référant à une longueur de tige filetée de 100 mm

⁴⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande.

3.4 Caractéristiques techniques

20.1 ⁴⁾	25	35	50.1 ⁴⁾	75	100.1 ⁴⁾	150	200.1 ⁴⁾	Taille
200/200	250/250	350/350	500/500	750/750	800/1 000	1 500/1 500	2 000/2 000	Force de levage maxi
178/200	250/250	350/350	500/500	750/750	800/1 000	1 500/1 500	-	Force de traction maxi
70x12	90x16	100x16	120x16	140x20	160x20	190x24	220x28	Tige filetée trapézoïdal Tr ¹⁾
8 :1	10 2/3 :1	10 2/3 :1	10 2/3 :1	12 :1	12 :1	19 :1	17,5 :1	Rapport N
1,50	1,50	1,50	1,50	1,667	1,667	1,263	1,60	Course par tour pour rapport N
24 :1	32 :1	32 :1	32 :1	36 :1	36 :1	-	-	Rapport L
0,50	0,50	0,50	0,50	0,556	0,556	-	-	Course par tour pour rapport L
3,8	5,0	6,0	7,4	9,0	12,5	18,5	sur demande	Puissance maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 20 % par h
5,4	7,2	8,6	10,4	12,6	17,5	26	sur demande	Puissance maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 10 % par h
24	22	21	15	18	15	15	17,5	Rendement total Rapport N
17	15	14	10	12	9	-	-	Rendement total Rapport L
37,5	36,5	34	30	31,6	28,5	28,8	29	Rendement de l'axe fileté
		voir tablea	aux de puissance	es 3.4.3.1				Couple-Puissance-Vitesse avec une durée d'ut. ED de 20 %/h, à 20°C
1061	1725	2600	4235	7550	11115	19850	30700	Couple sur l'axe fileté sous force de levage maxi
280	480	705	840	2660	2660	4260	sur demande	Couple maxi admissible sur l'arbre de commande
		voir diagr	ammes de flamb	oage 3.4.2				Longueur maxi admissible de l'axe fileté pour charge en compression
		GGG				GS		Matériau du carter
36	70,5	87	176	ca. 350	538	850	ca. 1 000	Poids du vérin sans course et sans course et sans tube de protection
2,52	4,15	5,2	7,7	10,0	13,82	19,6	26,2	Poids de l'axe fileté par 100 mm de course
2,0	1,3	2,5	4,0	5,0	10,0	10,0	sur demande	Quantité de lubrifiant dans le carter
11,93	23,42	55,80	108,8	318,0	428,5	sur demande	sur demande	Moment d'interie J Rapport N type 1 ³⁾
12,14	23,74	56,30	109,9	325,2	431,3	sur demande	sur demande	Moment d'inertie J ³⁾ Rapport N type 2 ³⁾
9,427	19,59	44,08	88,37	275,6	346,0	sur demande	sur demande	Moment d'inertie J ³⁾ Rapport L type 1
9,451	19,62	44,13	88,49	279,4	346,3	sur demande	sur demande	Moment d'inertie J ³⁾ Rapport L type 2

www.pfaff-silberblau.com

35

3.4 Caractéristiques techniques

3.4.1.2 Vérins à vis MERKUR

Taille		M0	M1	M2	M3	M4	M5	M6	M7	M8
Force de levage maxi	[kN]	2,5	5	10	25	50	150	250	350	500
Force de traction maxi	[kN]	2,5	5	10	25	50	150	250	350	500
Tiges filetée trapézoïdal Tr ¹⁾		14x4	18x4	20x4	30x6	40x7	60x9	80x10	100x10	120x14
Rapport N		4 :1	4 :1	4 :1	6 :1	7 :1	9 :1	10 :1	10 :1	14 :1
Course par tour pour rapport N	[mm/t]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Rapport L		16 :1	16 :1	16 :1	24 :1	28 :1	36 :1	40 :1	40 :1	56 :1
Course par tour pour rapport L	[mm/t]	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
Puissance d'entraînement maxi ²⁾ à une température ambiante de 20°C, durée d'ut. ED de 20 % par h	[kW]	0,12	0,2	0,3	0,5	0,9	2,6	3,7	4,1	6,1
Puissance d'entraînement maxi ²⁾ à une température ambiante de 20°C, durée d'ut. ED de 10 % par h	[kW]	0,25	0,42	0,6	1,1	1,9	3,7	4,4	6,2	8,7
Rendement total Rapport N	[%]	34	30	28	27	25	19	19	15	15
Rendement total Rapport L	[%]	24	23	21	19	18	14	14	11	11
Rendement de l'axe fileté	[%]	49	42,5	40	40	36,5	32,5	29	24	28
Couple-Puissance-Vitesse avec une durée d'ut. ED de 20 %/h, à 20°C					voir tableau	ıx de puissan	ces 3.4.3.2			
Couple sur l'axe fileté sous force de levage maxi	[Nm]	3,2	7,5	16	60	153	437	1390	2312	4100
Couple maxi admissible sur l'arbre de commande	[Nm]	1,5	3,4	7,1	18	38	93	240	340	570
Longueur maxi admissible de l'axe fileté pour charge en compression	[mm]				voir diagrar	mmes de flam	bage 3.4.2			
Matériau du carter			Al-Leg		G	G		GC	GG	
Poids du vérin sans course et sans tube de protection	[kg]	0,6	1,2	2,1	6	17	32	57	85	160
Poids de l'axe fileté par 100 mm de course	[kg]	0,1	0,35	0,45	0,7	1,2	2	4,2	6,6	10,3
Quantité de lubrifiant dans le carter	[kg]	0,03	0,08	0,14	0,24	0,8	1,1	2,0	2,7	3,2
Moment d'inertie J ³⁾ Rapport N type 1	[kg cm ²]	0,070	0,122	0,160	0,780	1,917	3,412	16,04	49,12	96,27
Moment d'Inertie J ³⁾ Rapport N type 2	[kg cm ²]	0,069	0,126	0,165	0,794	1,952	3,741	17,58	52,45	103,39
Moment d'inertie J ³⁾ Rapport L type 1	[kg cm ²]	0,045	0,088	0,115	0,558	1,371	2,628	12,35	37,05	72,62
Moment d'inertie J ³⁾ Rapport L type 2	[kg cm ²]	0,050	0,091	0,119	0,552	1,381	2,647	12,44	37,37	73,15

Dimensions Type 1 - chap 3.6.1 / Type 2 - chap 3.6.2

¹⁾ Pour les vérins vis à billes Ku, voir chapitre 3.4.7

²⁾ Valeurs maxi admissibles pour Type 1 et vérin avec tige filetée trapézoïdal Tr.

Pour l'emploi de Type 2 ou du vérin vis à billes Ku, des valeurs plus élevées sont possibles

 $^{^{3)}}$ se référant à une longueur de tige filetée de 100 mm

3.4 Caractéristiques techniques

3.4.1.3 Vérins à vis "hautes performances" HSE

Taille		32 ⁵⁾	36.1 ⁴⁾	50.1 ⁴⁾	63.1 ⁴⁾	80.1 ⁴⁾	100.1 ⁴⁾	125.1 ⁴⁾	140	200.1 ⁴⁾
Force de levage maxi	[kN]	5	10	25	50	100	200	350		1 000
Force de traction maxi	[kN]	5	10	25	50	100	178	350		1 000
Tige filetée trapézoïdal Tr ¹⁾		18x6	24x5	40x8	50x9	60x12	70x12	100x16		160x20
Rapport N		4 :1	5 :1	6 :1	7 :1	8 :1	8 :1	10 2/3 :1		13 1/3 :1
Course par tour pour rapport N	[mm/t]	1,5	1,0	1,33	1,28	1,5	1,5	1,5		1,5
Rapport L		16 :1	20 :1	24 :1	28 :1	32 :1	32 :1	32 :1	sur demande	40 :1
Course par tour pour rapport L	[mm/t]	0,375	0,25	0,33	0,32	0,375	0,375	0,5		0,5
Puissance d'entrainement maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 20 % par h	[kW]	0,60	0,90	1,5	2,3	3,6	4,8	7,7		17,9
Puissance d'entraînement maxi ²⁾ à une température ambiante de 20°C, avec unedurée d'ut. ED de 10 % par h	[kW]	1,0	1,5	2,6	4,0	6,3	8,4	13,5		31
Rendement total Rapport N	[%]		'		ir tablaauv	doc rondor	nonto 2 1 E	່		
Rendement total Rapport L	[%]			VC	n tableaux	des render	nents 3.4.5	.3		
Rendement de l'axe fileté	[%]	54	41	40	36,5	39,5	35,5	34	sur demande	28,5
Couple-Puissance-Vitesse avec une durée d'ut. ED de 20 %/h, à 20°C				٧	oir tableau	κ de puissa	nces 3.4.3.	3		
Couple sur l'axe fileté sous force de levage maxi	[Nm]	7,4	18,4	80	190	478	1060	2600		11115
Couple maxi admissible sur l'arbre de commande	[Nm]	12,6	29,4	48,7	168	398	705	975	sur demande	4260
Longueur maxi admissible de l'axe fileté pour charge en compression	[mm]			V	oir diagram	mes de flar	mbage 3.4.	2		
Matériau du carter		AlSi	12				GGG 50			
Poids du vérin sans course et sans tube de protection	[kg]	2,0	4,0	13	25	47	74	145		870
Poids de l'axe fileté par 100 mm de course	[kg]	0,16	0,23	0,82	1,3	1,79	2,52	5,2		13,82
Quantité de lubrifiant dans le carter	[kg]	0,07	0,15	0,4	0,9	1,5	2,1	5,0		15,5
Moment d'inertie J ³⁾ Rapport N type 1	[kg cm ²]	0,237	0,466	1,247	3,100	11,97	30,11	60,76	sur demande	
Moment d'inertie J ³⁾ Rapport N type 2	[kg cm²]	0,270	0,513	1,364	3,378	13,05	32,21	65,76		
Moment d'inertie J ³⁾ Rapport L type 1	[kg cm²]	0,150	0,204	0,638	1,804	8,13	20,91	44,88		
Moment d'inertie J ³⁾ Rapport L	[kg cm²]	0,153	0,207	0,645	1,822	8,20	21,04	45,43		

Dimensions Type 1 - chap 3.7.1 / Type 2 - chap 3.7.2

 $^{^{\}rm 1)}$ Egalement pour vérins vis à billes Ku, voir chapitre 3.4.7

 $^{^{2)}}$ Valeurs maxi admissibles pour Type 1 et vérin avec tige filetée trapézïdal Tr.

Pour l'emploi de Type 2 ou du vérin vis à billes Ku, des valeurs plus élevées sont possibles

³⁾ se référant à une longueur de tige filetée de 100 mm

⁴⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande.

⁵⁾ La dimension 32 remplace la dimension de construction précédente 31.

3.4 Caractéristiques techniques

3.4.1.4 Vérins à vis "grandes vitesses" SHG

Taille		G 15	G 25	G 50	G 90
Force de levage maxi	[kN]	15	25	50	90
Force de traction maxi	[kN]	15	25	50	90
Tige filetée trapézoïdal Tr1)		24x5	35x8	40x7	60x9
Rapport N			2	:1	
Course par tour pour rapport N	[mm/t]	2,5	4	3,5	4,5
Rapport L			3	:1	
Course par tour pour rapport L	[mm/t]	1,66	2,67	2,33	3
Puissance d'entraînement maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 20 % par h	[kW]	1,0	1,5	2,4	8,9
Puissance d'entraînement maxi ²⁾ à une température ambiante de 20°C, avec une durée d'ut. ED de 10 % par h	[kW]	1,3	2,6	3,8	13
Rendement de l'axe fileté	[%]	41	43	37	33
Couple-Puissance-Vitesse avec une durée d'ut. ED de 20 %/h, à 20°C		voir ta	ableau de pu	uissances 3	.4.3.4
Couple sur l'axe fileté sous force de levage maxi	[Nm]	29,4	73,2	123,4	398,5
Couple maxi admissible sur l'arbre de commande	[Nm]	50	125	175	1600
Longueur maxi admissible de l'axe fileté pour charge en compression	[mm]	voi	r diagramm	e de flamba	ige
Matériau du carter		GG	AlSi10Mg	G	G
Poids du vérin sans course et sans tube de protection	[kg]	9	13,5	23	85
Poids de l'axe fileté par 100 mm de course	[kg]	0,8	0,59	1,5	2,5
Quantité de lubrifiant dans le carter	[kg]	0,15	0,9	0,6	3,5
Moment d'inertie J ³⁾ Rapport N type 1	[kg cm ²]	1,058	6,63	22,44	181,28
Moment d'inertie J ³⁾ Rapport N type 2	[kg cm ²]	1,079	6,79	22,89	184,92
Moment d'inertie J ³⁾ Rapport L type 1	[kg cm ²]	0,677	3,60	7,248	123,79
Moment d'inertie J ³⁾ Rapport L type 2	[kg cm ²]	0,691	3,67	7,393	126,28

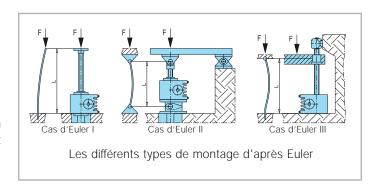
Dimensions Type 1 - chap 3.8.1 / Type 2 - chap 3.8.2

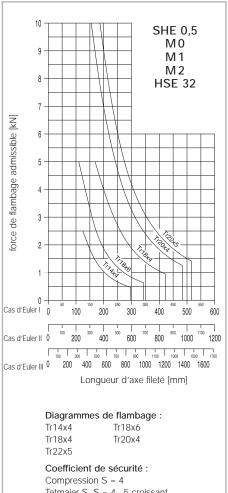
¹⁾ Pour les vérins vis à billes Ku, voir chapitre 3.4.7

²⁾ Valeurs maxi admissibles pour Type 1 et vérin avec tige filetée trapézoïdal Tr.

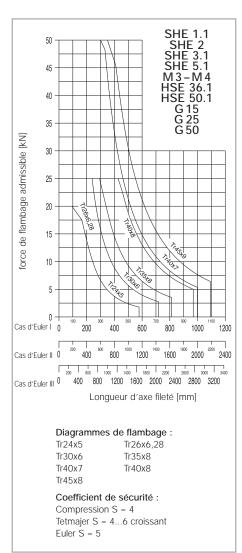
Pour l'emploi de Type 2 ou du vérin vis à billes Ku, des valeurs plus élevées sont possibles

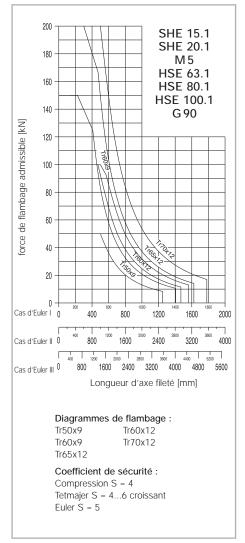
 $^{^{3)}}$ se référant à une longueur de tige filetée de 100 mm

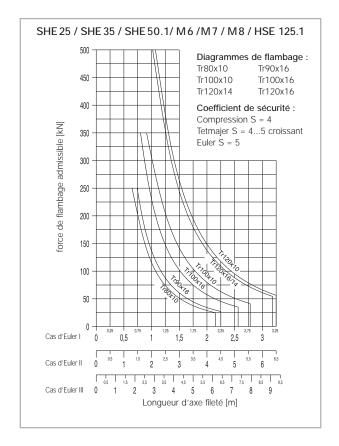


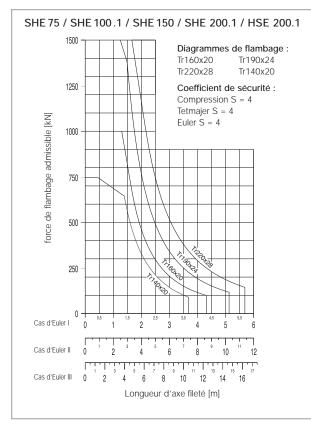

3.4 Caractéristiques techniques

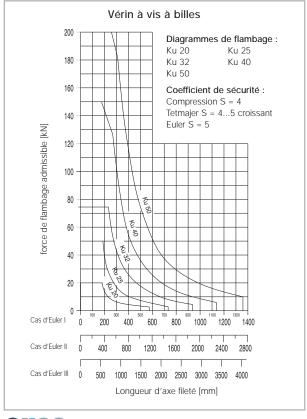
3.4.2 Force de flambage admissible

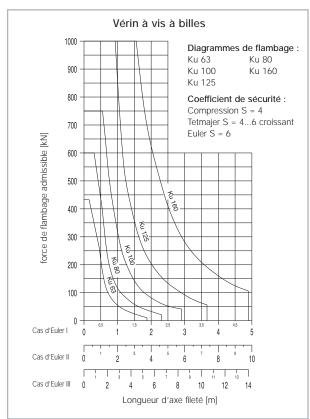

Dimensionnement des axes filetés en cas d'effort de compression


Consulter les diagrammes suivants, qui donnent la force de flambage admissible pour les vérins à filet trapézoïdal et les vérins à vis à billes.


Tetmajer S = 4...5 croissant







3.4 Caractéristiques techniques

3.4 Caractéristiques techniques

3.4.3 Tableaux de puissances (vérins avec tiges filetées trapezïodale Tr)

3.4.3.1 Série SHE (vérins à vis standard)

Nombre de tours, puissance nécessaire et vitesse de levage admissible pour les rapports N et L avec **axe à un seul filet trapézoïdal montant (type 1)**. Toutes les puissances indiquées sont calculées en tenant compte de la force de levage dynamique. Pour des durées d'utilisation < 10 %/h, ou s'il s'agit d'une exécution avec axe fileté tournant (type 2), il est possible d'augmenter les puissances d'entraînement maximales admissibles. Dans ce cas, veuillez consulter nos spécialistes.

SHE 0,5 Tige filetée Tr 18x6

n	Vitesse o	de levage		F=5	[kN]		F=4 [kN]					F=3	[kN]			F=2,	5 [kN]			F=2	[kN]			F=1,5	5 [kN]			F=1	[kN]	
[1/min]	(m/i	min)	1	J	l	_	1	J	L	-	l N	J	L	-	1	V	l I	-	_ N	J	l L	-	1	V	L	-	_ N	٧	L	_
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	0,90	0,450	1,54	0,24	0,99	0,16	1,23	0,19	0,80	0,13	0,92	0,15	0,60	0,10	0,77	0,12	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
1 000	0,60	0,300	1,54	0,16	0,99	0,1	1,23	0,13	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
750	0,45	0,225	1,54	0,12	0,99	0,1	1,23	0,1	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
600	0,36	0,180	1,54	0,1	0,99	0,1	1,23	0,1	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
500	0,30	0,150	1,54	0,1	0,99	0,1	1,23	0,1	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
300	0,18	0,090	1,54	0,1	0,99	0,1	1,23	0,1	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
100	0,06	0,030	1,54	0,1	0,99	0,1	1,23	0,1	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1
50	0,03	0,015	1,54	0,1	0,99	0,1	1,23	0,1	0,80	0,1	0,92	0,1	0,60	0,1	0,77	0,1	0,50	0,1	0,62	0,1	0,40	0,1	0,46	0,1	0,30	0,1	0,31	0,1	0,20	0,1

SHE 1.1 filetée Tr 24x5

n		de levage		F=15	[kN]			F=12	[kN]			F=10	[kN]			F=8	[kN]			F=6	[kN]			F=4	[kN]			F=2	[kN]	
[1/min]	[m/r	min.]	1	V		L	1	1	L	-	1	V	- 1	L	1	V		_	1	V	L	-	1	V	L	L	1	N	L	- /
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW																
1 500	1,500	0,375	8,1	1,27	2,6	0,42	6,5	1,02	2,1	0,33	5,4	0,85	1,8	0,28	4,3	0,68	1,4	0,22	3,2	0,51	1,1	0,20	2,2	0,34	0,7	0,1	1,1	0,20	0,4	0,1
1 000	1,000	0,250	8,1	0,85	2,6	0,28	6,5	0,68	2,1	0,22	5,4	0,56	1,8	0,20	4,3	0,45	1,4	0,20	3,2	0,34	1,1	0,1	2,2	0,23	0,7	0,1	1,1	0,1	0,4	0,1
750	0,750	0,188	8,1	0,64	2,6	0,21	6,5	0,51	2,1	0,20	5,4	0,42	1,8	0,20	4,3	0,34	1,4	0,1	3,2	0,25	1,1	0,1	2,2	0,20	0,7	0,1	1,1	0,1	0,4	0,1
600	0,600	0,150	8,1	0,51	2,6	0,20	6,5	0,41	2,1	0,20	5,4	0,34	1,8	0,1	4,3	0,27	1,4	0,1	3,2	0,20	1,1	0,1	2,2	0,20	0,7	0,1	1,1	0,1	0,4	0,1
500	0,500	0,125	8,1	0,42	2,6	0,20	6,5	0,34	2,1	0,1	5,4	0,28	1,8	0,1	4,3	0,23	1,4	0,1	3,2	0,20	1,1	0,1	2,2	0,1	0,7	0,1	1,1	0,1	0,4	0,1
300	0,300	0,075	8,1	0,25	2,6	0,1	6,5	0,20	2,1	0,1	5,4	0,20	1,8	0,1	4,3	0,20	1,4	0,1	3,2	0,1	1,1	0,1	2,2	0,1	0,7	0,1	1,1	0,1	0,4	0,1
100	0,100	0,025	8,1	0,1	2,6	0,1	6,5	0,1	2,1	0,1	5,4	0,1	1,8	0,1	4,3	0,1	1,4	0,1	3,2	0,1	1,1	0,1	2,2	0,1	0,7	0,1	1,1	0,1	0,4	0,1
50	0,050	0,013	8,1	0,1	2,6	0,1	6,5	0,1	2,1	0,1	5,4	0,1	1,8	0,1	4,3	0,1	1,4	0,1	3,2	0,1	1,1	0,1	2,2	0,1	0,7	0,1	1,1	0,1	0,4	0,1

SHE 2 Tige filetée Tr 26x6,28

n	Vitesse o	de levage		F=20) [kN]			F=15	[kN]			F=10	[kN]			F=8	[kN]			F=6	[kN]			F=4	[kN]			F=2	[kN]	
[1/min]	(m/	min)	N	1	L	-	N	J	[-	1	V	1	_	n	J	l l	-	N	V	L		N	V	[-	1	J	L	- /
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	1,57	0,393	10,75	1,7	4,63	0,7	8,06	1,3	3,47	0,5	5,37	0,8	2,31	0,4	4,30	0,7	1,85	0,3	3,22	0,5	1,39	0,2	2,15	0,3	0,93	0,1	1,07	0,2	0,46	0,1
1 000	1,05	0,262	10,75	1,1	4,63	0,5	8,06	0,8	3,47	0,4	5,37	0,6	2,31	0,2	4,30	0,5	1,85	0,2	3,22	0,3	1,39	0,1	2,15	0,2	0,93	0,1	1,07	0,1	0,46	0,1
750	0,79	0,196	10,75	0,8	4,63	0,4	8,06	0,6	3,47	0,3	5,37	0,4	2,31	0,2	4,30	0,3	1,85	0,1	3,22	0,3	1,39	0,1	2,15	0,2	0,93	0,1	1,07	0,1	0,46	0,1
600	0,63	0,157	10,75	0,7	4,63	0,3	8,06	0,5	3,47	0,2	5,37	0,3	2,31	0,1	4,30	0,3	1,85	0,1	3,22	0,2	1,39	0,1	2,15	0,1	0,93	0,1	1,07	0,1	0,46	0,1
500	0,52	0,131	10,75	0,6	4,63	0,2	8,06	0,4	3,47	0,2	5,37	0,3	2,31	0,1	4,30	0,2	1,85	0,1	3,22	0,2	1,39	0,1	2,15	0,1	0,93	0,1	1,07	0,1	0,46	0,1
300	0,31	0,079	10,75	0,3	4,63	0,1	8,06	0,3	3,47	0,1	5,37	0,2	2,31	0,1	4,30	0,1	1,85	0,1	3,22	0,1	1,39	0,1	2,15	0,1	0,93	0,1	1,07	0,1	0,46	0,1
100	0,10	0,026	10,75	0,1	4,63	0,1	8,06	0,1	3,47	0,1	5,37	0,1	2,31	0,1	4,30	0,1	1,85	0,1	3,22	0,1	1,39	0,1	2,15	0,1	0,93	0,1	1,07	0,1	0,46	0,1
50	0,05	0,013	10,75	0,1	4,63	0,1	8,06	0,1	3,47	0,1	5,37	0,1	2,31	0,1	4,30	0,1	1,85	0,1	3,22	0,1	1,39	0,1	2,15	0,1	0,93	0,1	1,07	0,1	0,46	0,1

SHE 3.1 filetée Tr 30x6

n	Vitesse o	de levage		F=30	[kN]			F=25	[kN]			F=20	[kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]			F=2,	5 [kN]	
[1/min]	[m/r	nin.]	1	J		L I	1	1	L	-	1	V		L	1	V		_	1	V	- 1	_	1	V	L	L	1	V	L	- /
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW										
1 500	1,50	0,375	17,6	2,76	6,3	1,00	14,7	2,31	5,2	0,82	11,8	1,85	4,2	0,66	8,8	1,39	3,1	0,49	5,9	0,93	2,1	0,33	2,9	0,46	1,0	0,2	1,5	0,2	0,5	0,1
1 000	1,00	0,250	17,6	1,84	6,3	0,66	14,7	1,54	5,2	0,55	11,8	1,23	4,2	0,44	8,8	0,93	3,1	0,33	5,9	0,62	2,1	0,22	2,9	0,31	1,0	0,1	1,5	0,2	0,5	0,1
750	0,75	0,188	17,6	1,38	6,3	0,50	14,7	1,16	5,2	0,41	11,8	0,93	4,2	0,33	8,8	0,69	3,1	0,25	5,9	0,46	2,1	0,16	2,9	0,23	1,0	0,1	1,5	0,1	0,5	0,1
600	0,60	0,150	17,6	1,10	6,3	0,40	14,7	0,93	5,2	0,33	11,8	0,74	4,2	0,26	8,8	0,56	3,1	0,20	5,9	0,37	2,1	0,13	2,9	0,19	1,0	0,1	1,5	0,1	0,5	0,1
500	0,50	0,125	17,6	0.92	6,3	0,33	14,7	0,77	5,2	0,27	11,8	0,62	4,2	0,22	8,8	0,46	3,1	0,16	5,9	0,31	2,1	0,1	2,9	0,15	1,0	0,1	1,5	0,1	0,5	0,1
300	0,30	0,075	17,6	0,55	6,3	0,20	14,7	0,46	5,2	0,16	11,8	0,37	4,2	0,13	8,8	0,28	3,1	0,10	5,9	0,19	2,1	0,1	2,9	0,10	1,0	0,1	1,5	0,1	0,5	0,1
100	0,10	0,025	17,6	0,20	6,3	0,10	14,7	0,15	5,2	0,10	11,8	0,12	4,2	0,1	8,8	0,10	3,1	0,1	5,9	0,10	2,1	0,1	2,9	0,1	1,0	0,1	1,5	0,1	0,5	0,1
50	0,05	0,013	17,6	0,10	6,3	0,10	14,7	0,10	5,2	0,1	11,8	0,1	4,2	0,1	8,8	0,1	3,1	0,1	5,9	0,1	2,1	0,1	2,9	0,1	1,0	0,1	1,5	0,1	0,5	0,1

[□] Durée d'utilisation ED 20 % sur 1 heure ou 30 % sur 10 minutes à une température ambiante de 20°C

charge statique uniquement (dynamique non autorisée)

durée d'utilisation ED 10 % sur 1 heure et temp. ambiante de 20°C

3.4 Caractéristiques techniques

SHE 5.1 Tige filetée Tr 40x7

n	Vitesse o	de levage		F=50	[kN]			F=40	[kN]			F=30	[kN]			F=20	[kN]			F=10	[kN]			F=5	[kN]			F=3	[kN]	
[1/min]	[m/r	min.]	1	V	- 1	_	1	V	I	-	1	V	1	Ļ	1	V	- 1	-	1	V	l	-	N	V	L	-	1	V	L	- 1
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW														
1 500	1,75	0,438	38,7	6,08	14,5	2,28	30,9	4,86	11,6	1,82	23,2	3,65	8,7	1,37	15,5	2,43	5,8	0,91	7,7	1,22	2,9	0,5	3,9	0,6	1,5	0,2	1,9	0,3	0,7	0,2
1 000	1,17	0,292	38,7	4,05	14,5	1,52	30,9	3,24	11,6	1,22	23,2	2,43	8,7	0,91	15,5	1,62	5,8	0,61	7,7	0,81	2,9	0,3	3,9	0,4	1,5	0,2	1,9	0,2	0,7	0,1
750	0,88	0,219	38,7	3,04	14,5	1,14	30,9	2,43	11,6	0,91	23,2	1,82	8,7	0,68	15,5	1,22	5,8	0,46	7,7	0,61	2,9	0,2	3,9	0,3	1,5	0,1	1,9	0,2	0,7	0,1
600	0,70	0,175	38,7	2,43	14,5	0,91	30,9	1,94	11,6	0,73	23,2	1,46	8,7	0,55	15,5	0,97	5,8	0,36	7,7	0,49	2,9	0,2	3,9	0,2	1,5	0,1	1,9	0,1	0,7	0,1
500	0,58	0,146	38,7	2,03	14,5	0,76	30,9	1,62	11,6	0,61	23,2	1,22	8,7	0,46	15,5	0,81	5,8	0,30	7,7	0,41	2,9	0,2	3,9	0,2	1,5	0,1	1,9	0,1	0,7	0,1
300	0,35	0,088	38,7	1,22	14,5	0,46	30,9	0,97	11,6	0,36	23,2	0,73	8,7	0,27	15,5	0,49	5,8	0,18	7,7	0,24	2,9	0,1	3,9	0,1	1,5	0,1	1,9	0,1	0,7	0,1
100	0,12	0,029	38,7	0,41	14,5	0,15	30,9	0,32	11,6	0,12	23,2	0,24	8,7	0,10	15,5	0,16	5,8	0,10	7,7	0,10	2,9	0,1	3,9	0,1	1,5	0,1	1,9	0,1	0,7	0,1
50	0,06	0,015	38,7	0,20	14,5	0,10	30,9	0,16	11,6	0,1	23,2	0,1	8,7	0,1	15,5	0,1	5,8	0,1	7,7	0,1	2,9	0,1	3,9	0,1	1,5	0,1	1,9	0,1	0,7	0,1

SHE 15.1 Tige filetée Tr 60x12

n	Vitesse o	de levage		F=15	0 [kN]			F=10	0 [kN]			F=80) [kN]			F=60) [kN]			F=40) [kN]			F=20	[kN]			F=10	[kN]	
[1/min]	[m/r	nin.]	1	V	1		N	J	l l		N	V	1	_	1	V		L	1	V	l		N	ı	l		1	V	l	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	2,35	0,750	138,4	21,7	70,2	11,0	92,3	14,5	46,8	7,4	73,8	11,6	37,5	5,9	55,4	8,7	28,1	4,4	36,9	5,8	18,7	2,9	18,5	2,9	9,4	1,5	9,2	1,4	4,7	0,4
1 000	1,57	0,500	138,4	14,5	70,2	7,4	92,3	9,7	46,8	4,9	73,8	7,7	37,5	3,9	55,4	5,8	28,1	2,9	36,9	3,9	18,7	2,0	18,5	1,9	9,4	1,0	9,2	1,0	4,7	0,2
750	1,17	0,375	138,4	10,9	70,2	5,5	92,3	7,2	46,8	3,7	73,8	5,8	37,5	2,9	55,4	4,3	28,1	2,2	36,9	2,9	18,7	1,5	18,5	1,4	9,4	0,7	9,2	0,7	4,7	0,2
600	0,94	0,300	138,4	8,7	70,2	4,4	92,3	5,8	46,8	2,9	73,8	4,6	37,5	2,4	55,4	3,5	28,1	1,8	36,9	2,3	18,7	1,2	18,5	1,2	9,4	0,6	9,2	0,6	4,7	0,1
500	0,78	0,250	138,4	7,2	70,2	3,7	92,3	4,8	46,8	2,5	73,8	3,9	37,5	2,0	55,4	2,9	28,1	1,5	36,9	1,9	18,7	1,0	18,5	1,0	9,4	0,5	9,2	0,5	4,7	0,1
300	0,47	0,150	138,4	4,3	70,2	2,2	92,3	2,9	46,8	1,5	73,8	2,3	37,5	1,2	55,4	1,7	28,1	0,9	36,9	1,2	18,7	0,6	18,5	0,6	9,4	0,3	9,2	0,3	4,7	0,1
100	0,16	0,050	138,4	1,4	70,2	0,7	92,3	1,0	46,8	0,5	73,8	0,8	37,5	0,4	55,4	0,6	28,1	0,3	36,9	0,4	18,7	0,2	18,5	0,2	9,4	0,1	9,2	0,1	4,7	0,1
50	0.08	0.025	138 4	0.7	70.2	0.4	923	0.5	46.8	0.2	73.8	0.4	37.5	0.2	55.4	0.3	28 1	0.1	36.9	0.2	18 7	0.1	18.5	0.1	9.4	0.1	92	0.1	4.7	0.1

SHE 20.1 Tige filetée Tr 70x12

n	Vitesse	de levage		F=20	0 [kN]			F=16) [kN]			F=12	0 [kN]			F=10) [kN]			F=75	[kN]			F=50	[kN]			F=25	[kN]	
[1/min]	[m/i	min.]	1	V	l I		1	J	L		1	V	l L		1	J	l l	_	1	V	l L		N	J	L		1	V	L	. '
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	2,25	0,750	199,0	31,3	93,6	14,7	159,2	25,0	74,9	11,8	119,4	18,8	56,2	8,8	99,5	15,6	46,8	7,4	74,6	11,7	35,1	5,5	49,7	7,8	23,4	3,7	24,9	3,9	11,7	1,8
1 000	1,50	0,500	199,0	20,8	93,6	9,8	159,2	16,7	74,9	7,8	119,4	12,5	56,2	5,9	99,5	10,4	46,8	4,9	74,6	7,8	35,1	3,7	49,7	5,2	23,4	2,5	24,9	2,6	11,7	1,2
750	1,13	0,375	199,0	15,6	93,6	7,4	159,2	12,5	74,9	5,9	119,4	9,4	56,2	4,4	99,5	7,8	46,8	3,7	74,6	5,9	35,1	2,8	49,7	3,9	23,4	1,8	24,9	2,0	11,7	0,9
600	0,90	0,300	199,0	12,5	93,6	5,9	159,2	10,0	74,9	4,7	119,4	7,5	56,2	3,5	99,5	6,3	46,8	2,9	74,6	4,7	35,1	2,2	49,7	3,1	23,4	1,5	24,9	1,6	11,7	0,7
500	0,75	0,250	199,0	10,4	93,6	4,9	159,2	8,3	74,9	3,9	119,4	6,3	56,2	2,9	99,5	5,2	46,8	2,5	74,6	3,9	35,1	1,8	49,7	2,6	23,4	1,2	24,9	1,3	11,7	0,6
300	0,45	0,150	199,0	6,3	93,6	2,9	159,2	5,0	74,9	2,4	119,4	3,8	56,2	1,8	99,5	3,1	46,8	1,5	74,6	2,3	35,1	1,1	49,7	1,6	23,4	0,7	24,9	0,8	11,7	0,4
100	0,15	0,050	199,0	2,1	93,6	1,0	159,2	1,7	74,9	0,8	119,4	1,3	56,2	0,6	99,5	1,0	46,8	0,5	74,6	0,8	35,1	0,4	49,7	0,5	23,4	0,2	24,9	0,3	11,7	0,1
50	0,08	0,025	199,0	1,0	93,6	0,5	159,2	0,8	74,9	0,4	119,4	0,6	56,2	0,3	99,5	0,5	46,8	0,2	74,6	0,4	35,1	0,2	49,7	0,3	23,4	0,1	24,9	0,1	11,7	0,1

SHE 25 Tige filetée Tr 90x16

n	Vitesse o	de levage		F=25	0 [kN]			F=20	0 [kN]			F=16	0 [kN]			F=120) [kN]			F=10	0 [kN]			F=75	[kN]			F=50	[kN]	
[1/min]	[m/r	min.]	1	J		_	l N	J	l i	-	l N	J	l i	-	1	J	L	-	l N	1	l i	-	l N	J	l i	-	l N	V	L	-
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000	1,50	0,500	271,3	28,4	132,6	13,9	217,0	22,7	106,1	11,1	173,6	18,2	84,9	8,9	130,2	13,6	63,7	6,7	108,5	11,4	53,1	5,6	81,4	8,5	39,8	4,2	54,3	5,7	26,5	2,8
750	1,13	0,375	271,3	21,3	132,6	10,4	217,0	17,0	106,1	8,3	173,6	13,6	84,9	6,7	130,2	10,2	63,7	5,0	108,5	8,5	53,1	4,2	81,4	6,4	39,8	3,1	54,3	4,3	26,5	2,1
600	0,90	0,300	271,3	17,0	132,6	8,3	217,0	13,6	106,1	6,7	173,6	10,9	84,9	5,3	130,2	8,2	63,7	4,0	108,5	6,8	53,1	3,3	81,4	5,1	39,8	2,5	54,3	3,4	26,5	1,7
500	0,75	0,250	271,3	14,2	132,6	6,9	217,0	11,4	106,1	5,6	173,6	9,1	84,9	4,4	130,2	6,8	63,7	3,3	108,5	5,7	53,1	2,8	81,4	4,3	39,8	2,1	54,3	2,8	26,5	1,4
300	0,45	0,150	271,3	8,5	132,6	4,2	217,0	6,8	106,1	3,3	173,6	5,5	84,9	2,7	130,2	4,1	63,7	2,0	108,5	3,4	53,1	1,7	81,4	2,6	39,8	1,3	54,3	1,7	26,5	0,8
100	0,15	0,050	271,3	2,8	132,6	1,4	217,0	2,3	106,1	1,1	173,6	1,8	84,9	0,9	130,2	1,4	63,7	0,7	108,5	1,1	53,1	0,6	81,4	0,9	39,8	0,4	54,3	0,6	26,5	0,3
50	0,08	0,025	271,3	1,4	132,6	0,7	217,0	1,1	106,1	0,6	173,6	0,9	84,9	0,4	130,2	0,7	63,7	0,3	108,5	0,6	53,1	0,3	81,4	0,4	39,8	0,2	54,3	0,3	26,5	0,1

SHE 35 Tige filetée Tr 100x16

n	Vitesse o	de levage		F=350	[kN]*			F=30	0 [kN]			F=25	0 [kN]			F=20	0 [kN]			F=150) [kN]			F=10) [kN]			F=50	[kN]	
[1/min]	[m/r	nin.]	N	J	L	-	1	V	L		N	V	L	_	1	V	L		l N	1	L		N	V	L		l N	J	L	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000	1,50	0,500	397,9	41,7	199,0	20,8	341,1	35,7	170,5	17,9	284,2	29,8	142,1	14,9	227,4	23,8	113,7	11,9	170,5	17,9	85,3	8,9	113,7	11,9	56,8	6,0	56,8	6,0	28,4	3,0
750	1,13	0,375	397,9	31,3	199,0	15,6	341,1	26,8	170,5	13,4	284,2	22,3	142,1	11,2	227,4	17,9	113,7	8,9	170,5	13,4	85,3	6,7	113,7	8,9	56,8	4,5	56,8	4,5	28,4	2,2
600	0,90	0,300	397,9	25,0	199,0	12,5	341,1	21,4	170,5	10,7	284,2	17,9	142,1	8,9	227,4	14,3	113,7	7,1	170,5	10,7	85,3	5,4	113,7	7,1	56,8	3,6	56,8	3,6	28,4	1,8
500	0,75	0,250	397,9	20,8	199,0	10,4	341,1	17,9	170,5	8,9	284,2	14,9	142,1	7,4	227,4	11,9	113,7	6,0	170,5	8,9	85,3	4,5	113,7	6,0	56,8	3,0	56,8	3,0	28,4	1,5
300	0,45	0,150	397,9	12,5	199,0	6,3	341,1	10,7	170,5	5,4	284,2	8,9	142,1	4,5	227,4	7,1	113,7	3,6	170,5	5,4	85,3	2,7	113,7	3,6	56,8	1,8	56,8	1,8	28,4	0,9
100	0,15	0,050	397,9	4,2	199,0	2,1	341,1	3,6	170,5	1,8	284,2	3,0	142,1	1,5	227,4	2,4	113,7	1,2	170,5	1,8	85,3	0,9	113,7	1,2	56,8	0,6	56,8	0,6	28,4	0,3
50	0,08	0,025	397,9	2,1	199,0	1,0	341,1	1,8	170,5	0,9	284,2	1,5	142,1	0,7	227,4	1,2	113,7	0,6	170,5	0,9	85,3	0,4	113,7	0,6	56,8	0,3	56,8	0,3	28,4	0,1

^{*} Values for type 2, tensile load on request!

[☐] Durée d'utilisation ED 20 % sur 1 heure ou 30 % sur 10 minutes à une ☐ température ambiante de 20°C

charge statique uniquement (dynamique non autorisée)

durée d'utilisation ED 10 % sur 1 heure et temp. ambiante de 20°C

3.4 Caractéristiques techniques

SHE 50.1 Tige filetée Tr 120x16

n	Vitesse d	le levage		F=50	0 [kN]			F=40	0 [kN]			F=30	0 [kN]			F=20	0 [kN]			F=15	0 [kN]			F=10	0 [kN]			F=50	[kN]	
[1/min]	[m/n	nin.]	N	V		_	1	V	L		1	V	1	-	1	V		Ļ	1	V		-	1	V	l	-	1	V	1	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW																				
1 000	1,500	0,500	796	84	398	42	637	67	318	34	478	50	239	25	318	34	159	17	239	25	119	13	159	17	80	8,4	80	8,4	40	4,2
750	1,125	0,375	796	63	398	32	637	50	318	25	478	38	239	19	318	25	159	13	239	19	119	9,4	159	13	80	6,3	80	6,3	40	3,2
500	0,750	0,250	796	42	398	21	637	34	318	17	478	25	239	13	318	17	159	8,4	239	13	119	6,3	159	8,4	80	4,2	80	4,2	40	2,1
400	0,600	0,200	796	34	398	17	637	27	318	14	478	20	239	10	318	14	159	6,7	239	10	119	5	159	6,7	80	3,4	80	3,4	40	1,7
300	0,450	0,150	796	25	398	13	637	20	318	10	478	15	239	7,5	318	10	159	5	239	7,5	119	3,8	159	5	80	2,5	80	2,5	40	1,3
200	0,300	0,100	796	17	398	8,4	637	14	318	6,7	478	10	239	5	318	6,7	159	3,4	239	5	119	2,5	159	3,4	80	1,7	80	1,7	40	0,9
100	0,150	0,050	796	8,4	398	4,2	637	6,7	318	3,4	478	5	239	2,5	318	3,4	159	1,7	239	2,5	119	1,3	159	1,7	80	0,9	80	0,9	40	0,5
50	0,075	0,025	796	4,2	398	2,1	637	3,4	318	1,7	478	2,5	239	1,3	318	1,7	159	0,9	239	1,3	119	0,7	159	0,9	80	0,5	80	0,5	40	0,5

SHE 75 Tige filetée Tr 140x20

n	Vitesse o	de levage		F=75	0 [kN]			F=50	0 [kN]			F=40	0 [kN]			F=30	0 [kN]			F=200) [kN]			F=100	0 [kN]			F=50) [kN]	
[1/min]	[m/r	nin.]	1	J		L	1	V	1	_	1	V	1	_	N	V	Ĺ		N	1	L	-	1	V	1	_	1	V		L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000	1,667	0,556	1105	116	553	58	737	77	368	39	590	62	295	31	442	46	221	23	295	31	147	15	147	15	74	7,7	74	7,7	37	3,9
750	1,250	0,417	1105	87	553	43	737	58	368	29	590	46	295	23	442	35	221	17	295	23	147	12	147	12	74	5,8	74	5,8	37	2,9
500	0,833	0,278	1105	58	553	29	737	39	368	19	590	31	295	15	442	23	221	12	295	15	147	7,7	147	7,7	74	3,9	74	3,9	37	1,9
400	0,667	0,222	1105	46	553	23	737	31	368	15	590	25	295	12	442	19	221	9,3	295	12	147	6,2	147	6,2	74	3,1	74	3,1	37	1,5
300	0,500	0,167	1105	35	553	17	737	23	368	12	590	19	295	9,3	442	14	221	6,9	295	9,3	147	4,6	147	4,6	74	2,3	74	2,3	37	1,2
200	0,333	0,111	1105	23	553	12	737	15	368	7,7	590	12	295	6,2	442	9,3	221	4,6	295	6,2	147	3,1	147	3,1	74	1,5	74	1,5	37	0,8
100	0,167	0,056	1105	12	553	5,8	737	7,7	368	3,9	590	6,2	295	3,1	442	4,6	221	2,3	295	3,1	147	1,5	147	1,5	74	0,8	74	0,8	37	0,4
50	0,083	0,028	1105	5,8	553	2,9	737	3,9	368	1,9	590	3,1	295	1,5	442	2,3	221	1,2	295	1,5	147	0,8	147	0,8	74	0,4	74	0,4	37	0,2

SHE 100.1 Tige filetée Tr 160x20

n	Vitesse o	de levage		F=1 00	00 [kN]				F=800) [kN]			F=60	0 [kN]			F=400	[kN]		F=20) [kN]			F=100) [kN]			F=50	[kN]	
[1/min]	[m/r	nin.]	1	V	1	-	N	V	L		1	V	1	_	1	V		_	1	V	L		1	l l	L	-	1	V	L	-
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000	1,667	0,556	1770	185	983	103	1420	148	786	83	1060	112	590	62	707	74	393	42	354	37	197	21	177	19	99	11	88	9,3	49	5,2
750	1,250	0,417	1770	139	983	78	1420	112	786	62	1060	84	590	47	707	56	393	31	354	28	197	16	177	14	99	7,8	88	7	49	3,9
500	0,833	0,278	1770	93	983	52	1420	74	786	42	1060	56	590	31	707	37	393	21	354	19	197	11	177	9,3	99	5,2	88	4,6	49	2,6
400	0,667	0,222	1770	74	983	42	1420	60	786	33	1060	45	590	25	707	30	393	17	354	15	197	8,3	177	7,5	99	4,2	88	3,7	49	2,1
300	0,500	0,167	1770	56	983	31	1420	45	786	25	1060	34	590	19	707	23	393	13	354	11	197	6,2	177	5,6	99	3,1	88	2,8	49	1,6
200	0,333	0,111	1770	37	983	21	1420	30	786	17	1060	23	590	13	707	15	393	8,3	354	7,4	197	4,2	177	3,7	99	2,1	88	1,9	49	1,1
100	0,167	0,056	1770	19	983	11	1420	15	786	8,3	1060	11	590	6,2	707	7,4	393	4,2	354	3,7	197	2,1	177	1,9	99	1,1	88	1	49	0,5
50	0,083	0,028	1770	9,3	983	5,2	1420	7,4	786	4,2	1060	5,6	590	3,1	707	3,7	393	2,1	354	1,9	197	1,1	177	1	99	0,6	88	0,5	49	0,5

SHE 150 Tige filetée Tr 190x24

n	Vitesse o	le levage		F=1 50	00 [kN]				F=125	0 [kN]			F=1 00	00 [kN]			F=750	[kN]		F=500) [kN]			F=250) [kN]			F=100) [kN]	
[1/min]	[m/r	nin.]	1	V		L	I 1	1	l I	-	N	J	L	-	N	J	l L	-	N	1	L		1	1	L	-	N	J	L	-
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000	1,263		2010	211			1680	175			1340	140			1010	105			670	70			335	35			134	14		
750	0,947		2010	158			1680	132			1340	105			1010	79			670	53			335	26			134	11		1 1
500	0,632		2010	105			1680	88			1340	70			1010	53			670	35			335	18			134	7		
400	0,505		2010	84			1680	70			1340	56			1010	42			670	28			335	14			134	5,6		i I
300	0,379		2010	63			1680	53			1340	42			1010	32			670	21			335	11			134	4,2		
200	0,253		2010	42			1680	35			1340	28			1010	21			670	14			335	7			134	2,8		i I
100	0,126		2010	21			1680	18			1340	14			1010	11			670	7			335	3,5			134	1,4		
50	0,063		2010	11			1680	8,8			1340	7			1010	5,3			670	3,5			335	1,8			134	0,7		1 1

SHE 200.1 Tige filetée Tr 220x28

n	Vitesse o	de levage		F=2 0	00 [kN]			F=15	00 [kN			F = 100	00 [kN]		F=750	[kN]		F=50	0 [kN]			F=25	0 [kN]			F=10	00 [kN]	
[1/min]	[m/	min.]	1	V	Į	L	1	V	1	_	l N	ı	l I	_	1	I	l	.	N	ı		L	1	V		L	1	J	1	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000																														
750																														
600																														
500																sur de	mande													
300																														
100																														
50																														

Durée d'utilisation ED 20 % sur 1 heure ou 30 % sur 10 minutes à une température ambiante de 20°C

charge statique uniquement (dynamique non autorisée)

durée d'utilisation ED 10 % sur 1 heure et temp. ambiante de 20°C

3.4.3.2 Série MERKUR (Vérins à vis standard)

Nombre de tours, puissance nécessaire et vitesse de levage admissible pour les rapports N et L avec axe à un seul filet trapézoïdal montant (type 1). Toutes les puissances indiquées sont calculées en tenant compte de la force de levage dynamique. Pour des durées d'utilisation < 10 %/h, ou s'il s'agit d'une exécution avec axe fileté tournant (type 2), il est possible d'augmenter les puissances d'entraînement maximales admissibles. Dans ce cas, veuillez consulter nos spécialistes.

Livrable sur demande avec une lubrification (MERKUR H) pour des vitesses de rotation allant jusqu'à 3 000 min⁻¹.

M 0 Tige filetée Tr 14x4

n	Vitesse o	de levage		F=2.5	5 [kN]			F=2	[kN]			F=1.5	5 [kN]			F=1	[kN]			F=0.7	'5 [kN]			F=0.5	5 [kN]			F=0.2	25 [kN]	
[1/min]	1	min.]	1	N I	. ,	L	1	V		L	1	v İ	' '	L	1	N		L	1	V	1	L	1	N		L	1	N	1	Ĺ
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	1,50	0,375	1,2	0,18	0,4	0,1	0,9	0,15	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
1 000	1,00	0,250	1,2	0,12	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
750	0,75	0,188	1,2	0,10	0,4	0,1	0,9	0,1	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
600	0,60	0,150	1,2	0,1	0,4	0,1	0,9	0,1	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
500	0,50	0,125	1,2	0,1	0,4	0,1	0,9	0,1	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
300	0,30	0,075	1,2	0,1	0,4	0,1	0,9	0,1	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
100	0,10	0,025	1,2	0,1	0,4	0,1	0,9	0,1	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
50	0,05	0,013	1,2	0,1	0,4	0,1	0,9	0,1	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1

M 1 Tige filetée Tr 18x4

n	Vitesse o	de levage		F=5	[kN]			F=4	[kN]			F=3	[kN]			F=2,	5 [kN]			F=2	[kN]			F=1,	5 [kN]			F=1	[kN]	
[1/min]	[m/	min.]	1	V		L	1	N	- 1	L	1	V	I	L	1	V	1	L	1	V	Į		1	N	1	-	1	N	l	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	1,50	0,375	2,7	0,42	0,9	0,1	2,1	0,33	0,7	0,1	1,6	0,25	0,5	0,1	1,3	0,21	0,4	0,1	1,1	0,20	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
1 000	1,00	0,250	2,7	0,28	0,9	0,1	2,1	0,22	0,7	0,1	1,6	0,17	0,5	0,1	1,3	0,14	0,4	0,1	1,1	0,10	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
750	0,75	0,188	2,7	0,21	0,9	0,1	2,1	0,17	0,7	0,1	1,6	0,13	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
600	0,60	0,150	2,7	0,17	0,9	0,1	2,1	0,13	0,7	0,1	1,6	0,10	0,5	0,1	1,3	0,1	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
500	0,50	0,125	2,7	0,14	0,9	0,1	2,1	0,1	0,7	0,1	1,6	0,1	0,5	0,1	1,3	0,1	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
300	0,30	0,075	2,7	0,1	0,9	0,1	2,1	0,1	0,7	0,1	1,6	0,1	0,5	0,1	1,3	0,1	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
100	0,10	0,025	2,7	0,1	0,9	0,1	2,1	0,1	0,7	0,1	1,6	0,1	0,5	0,1	1,3	0,1	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
50	0,05	0,013	2,7	0,1	0,9	0,1	2,1	0,1	0,7	0,1	1,6	0,1	0,5	0,1	1,3	0,1	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1

M 2 Tige filetée Tr 20x4

n	Vitesse	de levage		F=10	(kN)			F=8	[kN]			F=6	[kN]			F=4	[kN]			F=3	[kN]			F=2	[kN]			F=1	[kN]	
[1/min]	[m	/min.]		N		L	1	V		L		N		L	1	N	1	L		V	Į.	-		N	Į.	-	1	N		_
	N	L	Nm	kW	Nm	kW Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW													
1 500	1,50	0,375	5,7	0,89	1,9	0,30	4,5	0,71	1,5	0,24	3,4	0,54	1,1	0,18	2,3	0,36	0,8	0,1	1,7	0,27	0,6	0,1	1,1	0,20	0,4	0,1	0,6	0,1	0,2	0,1
1 000	1,00	0,250	5,7	0,60	1,9	0,20	4,5	0,48	1,5	0,16	3,4	0,36	1,1	0,12	2,3	0,24	0,8	0,1	1,7	0,18	0,6	0,1	1,1	0,10	0,4	0,1	0,6	0,1	0,2	0,1
750	0,75	0,188	5,7	0,45	1,9	0,15	4,5	0,36	1,5	0,12	3,4	0,27	1,1	0,1	2,3	0,18	0,8	0,1	1,7	0,13	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
600	0,60	0,150	5,7	0,36	1,9	0,12	4,5	0,29	1,5	0,10	3,4	0,21	1,1	0,1	2,3	0,14	0,8	0,1	1,7	0,1	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
500	0,50	0,125	5,7	0,30	1,9	0,1	4,5	0,24	1,5	0,1	3,4	0,18	1,1	0,1	2,3	0,12	0,8	0,1	1,7	0,1	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
300	0,30	0,075	5,7	0,18	1,9	0,1	4,5	0,14	1,5	0,1	3,4	0,11	1,1	0,1	2,3	0,10	0,8	0,1	1,7	0,1	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
100	0,10	0,025	5,7	0,10	1,9	0,1	4,5	0,1	1,5	0,1	3,4	0,1	1,1	0,1	2,3	0,1	0,8	0,1	1,7	0,1	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
50	0,05	0,013	5,7	0,1	1,9	0,1	4,5	0,1	1,5	0,1	3,4	0,1	1,1	0,1	2,3	0,1	0,8	0,1	1,7	0,1	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1

M 3 Tige filetée Tr 30x6

n	Vitesse	de levage		F=25	[kN]			F=20	[kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]			F=1	[kN]	
[1/min]	[m/	min.]	1	۱ ا	1	L	1	N	1	L	- 1	N		L	1	N	1	L	1	N	L	-	1	V	l l	-	1	V		L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	1,50	0,375	14,7	2,31	5,2	0,82	11,8	1,85	4,2	0,66	8,8	1,39	3,1	0,49	5,9	0,93	2,1	0,33	2,9	0,46	1,0	0,2	1,5	0,2	0,5	0,1	0,6	0,1	0,2	0,1
1 000	1,00	0,250	14,7	1,54	5,2	0,55	11,8	1,23	4,2	0,44	8,8	0,93	3,1	0,33	5,9	0,62	2,1	0,22	2,9	0,31	1,0	0,1	1,5	0,2	0,5	0,1	0,6	0,1	0,2	0,1
750	0,75	0,188	14,7	1,16	5,2	0,41	11,8	0,93	4,2	0,33	8,8	0,69	3,1	0,25	5,9	0,46	2,1	0,16	2,9	0,23	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
600	0,60	0,150	14,7	0,93	5,2	0,33	11,8	0,74	4,2	0,26	8,8	0,56	3,1	0,20	5,9	0,37	2,1	0,13	2,9	0,19	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
500	0,50	0,125	14,7	0,77	5,2	0,27	11,8	0,62	4,2	0,22	8,8	0,46	3,1	0,16	5,9	0,31	2,1	0,11	2,9	0,15	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
300	0,30	0,075	14,7	0,46	5,2	0,16	11,8	0,37	4,2	0,13	8,8	0,28	3,1	0,10	5,9	0,19	2,1	0,1	2,9	0,10	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
100	0,10	0,025	14,7	0,15	5,2	0,10	11,8	0,12	4,2	0,1	8,8	0,10	3,1	0,1	5,9	0,10	2,1	0,1	2,9	0,1	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
50	0,05	0,013	14,7	0,10	5,2	0,1	11,8	0,1	4,2	0,1	8,8	0,1	3,1	0,1	5,9	0,1	2,1	0,1	2,9	0,1	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1

[□] Durée d'utilisation ED 20 % sur 1 heure ou 30 % sur 10 minutes à une □ température ambiante de 20°C

charge statique uniquement (dynamique non autorisée)

durée d'utilisation ED 10 % sur 1 heure et temp. ambiante de 20°C

3.4 Caractéristiques techniques

M 4 Tige filetée 40x7

n	Vitesse o	de levage		F=50	[kN]			F=40	[kN]			F=30	[kN]			F=20	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]	
[1/min]	[m/r	min.]	1	V	l I	-	1	J	L		1	V	L	-	1	V		L	1	V	l I	-	1	V	I	_	1	V	L	-
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW												
1 500	1,50	0,375	31,8	5,0	11,1	1,7	25,5	4,0	8,8	1,4	19,1	3,0	6,6	1,0	12,7	2,0	4,4	0,7	6,4	1,0	2,2	0,3	3,2	0,5	1,1	0,2	1,6	0,3	0,6	0,1
1 000	1,00	0,250	31,8	3,3	11,1	1,2	25,5	2,7	8,8	0,9	19,1	2,0	6,6	0,7	12,7	1,3	4,4	0,5	6,4	0,7	2,2	0,2	3,2	0,3	1,1	0,1	1,6	0,2	0,6	0,1
750	0,75	0,188	31,8	2,5	11,1	0,9	25,5	2,0	8,8	0,7	19,1	1,5	6,6	0,5	12,7	1,0	4,4	0,35	6,4	0,5	2,2	0,2	3,2	0,3	1,1	0,1	1,6	0,1	0,6	0,1
600	0,60	0,150	31,8	2,0	11,1	0,7	25,5	1,6	8,8	0,6	19,1	1,2	6,6	0,4	12,7	0,8	4,4	0,3	6,4	0,4	2,2	0,1	3,2	0,2	1,1	0,1	1,6	0,1	0,6	0,1
500	0,50	0,125	31,8	1,7	11,1	0,6	25,5	1,3	8,8	0,5	19,1	1,0	6,6	0,3	12,7	0,7	4,4	0,2	6,4	0,3	2,2	0,1	3,2	0,2	1,1	0,1	1,6	0,1	0,6	0,1
300	0,30	0,075	31,8	1,0	11,1	0,3	25,5	0,8	8,8	0,3	19,1	0,6	6,6	0,2	12,7	0,4	4,4	0,1	6,4	0,2	2,2	0,1	3,2	0,1	1,1	0,1	1,6	0,1	0,6	0,1
100	0,10	0,025	31,8	0,3	11,1	0,1	25,5	0,3	8,8	0,1	19,1	0,2	6,6	0,1	12,7	0,1	4,4	0,1	6,4	0,1	2,2	0,1	3,2	0,1	1,1	0,1	1,6	0,1	0,6	0,1
50	0,05	0,013	31,8	0,2	11,1	0,1	25,5	0,1	8,8	0,1	19,1	0,1	6,6	0,1	12,7	0,1	4,4	0,1	6,4	0,1	2,2	0,1	3,2	0,1	1,1	0,1	1,6	0,1	0,6	0,1

M 5 Tige filetée Tr 60x9

n	Vitesse o	de levage		F=15	0 [kN]			F=10	0 [kN]			F=80	[kN]			F=60	[kN]			F=40	[kN]			F=20	[kN]			F=10) [kN]	
[1/min]	[m/r	min.]	1	J	l l		N	J	l		n	J	ι		N	J	l l		1	J	l l		N	V	L		1	V	L	_
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	1,50	0,375	125,7	19,7	42,6	6,7	83,8	13,2	28,4	4,5	67,0	10,5	22,7	3,6	50,3	7,9	17,1	2,7	33,5	5,3	11,4	1,8	16,8	2,6	5,7	0,9	8,4	1,3	2,8	0,4
1 000	1,00	0,250	125,7	13,2	42,6	4,5	83,8	8,8	28,4	3,0	67,0	7,0	22,7	2,4	50,3	5,3	17,1	1,8	33,5	3,5	11,4	1,2	16,8	1,8	5,7	0,6	8,4	0,9	2,8	0,3
750	0,75	0,188	125,7	9,9	42,6	3,3	83,8	6,6	28,4	2,2	67,0	5,3	22,7	1,8	50,3	3,9	17,1	1,3	33,5	2,6	11,4	0,9	16,8	1,3	5,7	0,4	8,4	0,7	2,8	0,2
600	0,60	0,150	125,7	7,9	42,6	2,7	83,8	5,3	28,4	1,8	67,0	4,2	22,7	1,4	50,3	3,2	17,1	1,1	33,5	2,1	11,4	0,7	16,8	1,1	5,7	0,4	8,4	0,5	2,8	0,2
500	0,50	0,125	125,7	6,6	42,6	2,2	83,8	4,4	28,4	1,5	67,0	3,5	22,7	1,2	50,3	2,6	17,1	0,9	33,5	1,8	11,4	0,6	16,8	0,9	5,7	0,3	8,4	0,4	2,8	0,1
300	0,30	0,075	125,7	3,9	42,6	1,3	83,8	2,6	28,4	0,9	67,0	2,1	22,7	0,7	50,3	1,6	17,1	0,5	33,5	1,1	11,4	0,4	16,8	0,5	5,7	0,2	8,4	0,3	2,8	0,1
100	0,10	0,025	125,7	1,3	42,6	0,4	83,8	0,9	28,4	0,3	67,0	0,7	22,7	0,2	50,3	0,5	17,1	0,2	33,5	0,4	11,4	0,1	16,8	0,2	5,7	0,1	8,4	0,1	2,8	0,1
50	0,05	0,013	125,7	0,7	42,6	0,2	83,8	0,4	28,4	0,1	67,0	0,4	22,7	0,1	50,3	0,3	17,1	0,1	33,5	0,2	11,4	0,1	16,8	0,1	5,7	0,1	8,4	0,1	2,8	0,1

M 6 Tige filetée Tr 80x10

n	Vitesse (de levage		F=25	0 [kN]			F=20	0 [kN]			F=15	0 [kN]			F=10	0 [kN]			F=80	[kN]			F=60	[kN]			F=40	[kN]	
[1/min]	[m/r	min.]	1	V		_	N	J	L		1	V	l l		l 1	V		_	1	J	L		N	J	l L		1	J	1	_
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 500	1,50	0,375	209,4	32,9	71,1	11,2	167,5	26,3	56,8	8,9	125,7	19,7	42,6	6,7	83,8	13,2	28,4	4,5	67,0	10,5	22,7	3,6	50,3	7,9	17,1	2,7	33,5	5,3	11,4	1,8
1 000	1,00	0,250	209,4	21,9	71,1	7,4	167,5	17,5	56,8	6,0	125,7	13,2	42,6	4,5	83,8	8,8	28,4	3,0	67,0	7,0	22,7	2,4	50,3	5,3	17,1	1,8	33,5	3,5	11,4	1,2
750	0,75	0,188	209,4	16,4	71,1	5,6	167,5	13,2	56,8	4,5	125,7	9,9	42,6	3,3	83,8	6,6	28,4	2,2	67,0	5,3	22,7	1,8	50,3	3,9	17,1	1,3	33,5	2,6	11,4	0,9
600	0,60	0,150	209,4	13,2	71,1	4,5	167,5	10,5	56,8	3,6	125,7	7,9	42,6	2,7	83,8	5,3	28,4	1,8	67,0	4,2	22,7	1,4	50,3	3,2	17,1	1,1	33,5	2,1	11,4	0,7
500	0,50	0,125	209,4	11,0	71,1	3,7	167,5	8,8	56,8	3,0	125,7	6,6	42,6	2,2	83,8	4,4	28,4	1,5	67,0	3,5	22,7	1,2	50,3	2,6	17,1	0,9	33,5	1,8	11,4	0,6
300	0,30	0,075	209,4	6,6	71,1	2,2	167,5	5,3	56,8	1,8	125,7	3,9	42,6	1,3	83,8	2,6	28,4	0,9	67,0	2,1	22,7	0,7	50,3	1,6	17,1	0,5	33,5	1,1	11,4	0,4
100	0,10	0,025	209,4	2,2	71,1	0,7	167,5	1,8	56,8	0,6	125,7	1,3	42,6	0,4	83,8	0,9	28,4	0,3	67,0	0,7	22,7	0,2	50,3	0,5	17,1	0,2	33,5	0,4	11,4	0,1
50	0,05	0,013	209,4	1,1	71,1	0,4	167,5	0,9	56,8	0,3	125,7	0,7	42,6	0,2	83,8	0,4	28,4	0,1	67,0	0,4	22,7	0,1	50,3	0,3	17,1	0,1	33,5	0,2	11,4	0,1

M 7 Tige filetée Tr 100x10

n	Vitesse o	le levage		F=35	0 [kN]			F=30	0 [kN]			F=25	0 [kN]			F=20	0 [kN]			F=15	0 [kN]			F=100	0 [kN]			F=50	[kN]	
[1/min]	[m/r	nin.]	N	J	L	-	l N	J	L		1	J	L	-	l N	J	l	-	l N	1	L	-	N	J	L	-	1	V	L	_
	N	L	Nm	kW	Nm	kW Nm	kW	Nm	kW	Nm	kW	Nm	kW																	
1 500	1,50	0,375	371,4	58,3	126,6	19,9	318,3	50,0	108,5	17,0	265,3	41,7	90,4	14,2	212,2	33,3	72,3	11,4	159,2	25,0	54,3	8,5	106,1	16,7	36,2	5,7	53,1	8,3	18,1	2,8
1 000	1,00	0,250	371,4	38,9	126,6	13,3	318,3	33,3	108,5	11,4	265,3	27,8	90,4	9,5	212,2	22,2	72,3	7,6	159,2	16,7	54,3	5,7	106,1	11,1	36,2	3,8	53,1	5,6	18,1	1,9
750	0,75	0,188	371,4	29,2	126,6	9,9	318,3	25,0	108,5	8,5	265,3	20,8	90,4	7,1	212,2	16,7	72,3	5,7	159,2	12,5	54,3	4,3	106,1	8,3	36,2	2,8	53,1	4,2	18,1	1,4
600	0,60	0,150	371,4	23,3	126,6	8,0	318,3	20,0	108,5	6,8	265,3	16,7	90,4	5,7	212,2	13,3	72,3	4,5	159,2	10,0	54,3	3,4	106,1	6,7	36,2	2,3	53,1	3,3	18,1	1,1
500	0,50	0,125	371,4	19,4	126,6	6,6	318,3	16,7	108,5	5,7	265,3	13,9	90,4	4,7	212,2	11,1	72,3	3,8	159,2	8,3	54,3	2,8	106,1	5,6	36,2	1,9	53,1	2,8	18,1	0,9
300	0,30	0,075	371,4	11,7	126,6	4,0	318,3	10,0	108,5	3,4	265,3	8,3	90,4	2,8	212,2	6,7	72,3	2,3	159,2	5,0	54,3	1,7	106,1	3,3	36,2	1,1	53,1	1,7	18,1	0,6
100	0,10	0,025	371,4	3,9	126,6	1,3	318,3	3,3	108,5	1,1	265,3	2,8	90,4	0,9	212,2	2,2	72,3	0,8	159,2	1,7	54,3	0,6	106,1	1,1	36,2	0,4	53,1	0,6	18,1	0,2
50	0,05	0,013	371,4	1,9	126,6	0,7	318,3	1,7	108,5	0,6	265,3	1,4	90,4	0,5	212,2	1,1	72,3	0,4	159,2	0,8	54,3	0,3	106,1	0,6	36,2	0,2	53,1	0,3	18,1	0,1

M 8 Tige filetée Tr 120x14

n	Vitesse o	de levage		F=500	0 [kN]			F=40) [kN]			F=30	0 [kN]			F=20	0 [kN]			F=15	0 [kN]			F=100) [kN]			F=50) [kN]	
[1/min]		min.]		V	` '	_	1	V	<u> </u>	-	1	V	ĺ í	L	1	V	ĺ . <i>'</i>	L	1	V	ĺ í	_	1	V	<u> </u>	-	1	V	1	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1 000	1,00	0,250	531	55,6	181	18,9	424	44,4	145	15,2	318	33,3	108	11,4	212	22,2	72	7,6	159	16,7	54	5,7	106	11,1	36	3,8	53	5,6	18	1,9
750	0,75	0,188	531	41,7	181	14,2	424	33,3	145	11,4	318	25,0	108	8,5	212	16,7	72	5,7	159	12,5	54	4,3	106	8,3	36	2,8	53	4,2	18	1,4
600	0,60	0,150	531	33,3	181	11,4	424	26,7	145	9,1	318	20,0	108	6,8	212	13,3	72	4,5	159	10,0	54	3,4	106	6,7	36	2,3	53	3,3	18	1,1
500	0,50	0,125	531	27,8	181	9,5	424	22,2	145	7,6	318	16,7	108	5,7	212	11,1	72	3,8	159	8,3	54	2,8	106	5,6	36	1,9	53	2,8	18	0,9
300	0,30	0,075	531	16,7	181	5,7	424	13,3	145	4,5	318	10,0	108	3,4	212	6,7	72	2,3	159	5,0	54	1,7	106	3,3	36	1,1	53	1,7	18	0,6
100	0,10	0,025	531	5,6	181	1,9	424	4,4	145	1,5	318	3,3	108	1,1	212	2,2	72	0,8	159	1,7	54	0,6	106	1,1	36	0,4	53	0,6	18	0,2
50	0,05	0,013	531	2,8	181	0,9	424	2,2	145	0,8	318	1,7	108	0,6	212	1,1	72	0,4	159	0,8	54	0,3	106	0,6	36	0,2	53	0,3	18	0,1

- ☐ Durée d'utilisation ED 20 % sur 1 heure ou 30 % sur 10 minutes à une ☐ température ambiante de 20°C

- charge statique uniquement (dynamique non autorisée)
- durée d'utilisation ED 10 % sur 1 heure et temp. ambiante de 20°C

3.4 Caractéristiques techniques

3.4.3.3 Série HSE (Vérins à vis "hautes performances")

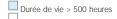
Nombre de tours, puissance nécessaire et vitesse de levage admissible pour les rapports N et L avec **axe à un seul filet trapé- zoïdal montant (type 1)**. Toutes les puissances indiquées sont calculées en tenant compte de la force de levage dynamique.

Pour des durées d'utilisation < 10 %/h, ou s'il s'agit d'une exécution avec axe fileté tournant (type 2), il est possible d'augmenter les puissances d'entraînement maximales admissibles.

HSE 32 Tige filetée 18x6

n	Vitesse o	le levage		F=5	[kN]			F=4,5	5 [kN]			F=4	[kN]			F=3,5	[kN]			F=3	[kN]			F=2	[kN]			F=1	[kN]	
[1/min]	[m/i	min]	1	V		L	1	V		L	1	V		L	1	N		L		N		L	1	V		L		N		L
[17111111]	N	L	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW	Nm	KW
3 000	4,50	1,125	2,7	0,84	0,9	0,27	2,4	0,75	0,8	0,25	2,1	0,67	0,7	0,22	1,9	0,58	0,6	0,19	1,6	0,50	0,5	0,16	1,1	0,3	0,3	0,10	0,6	0,20	0,3	0,10
2500	3,75	0,938	2,7	0,70	0,9	0,23	2,4	0,63	0,8	0,21	2,1	0,56	0,7	0,19	1,9	0,49	0,6	0,16	1,6	0,42	0,5	0,14	1,1	0,3	0,3	0,10	0,6	0,20	0,3	0,10
2 000	3,00	0,750	2,7	0,56	0,9	0,19	2,4	0,51	0,8	0,17	2,2	0,45	0,7	0,15	1,9	0,40	0,6	0,13	1,6	0,34	0,5	0,11	1,1	0,2	0,3	0,10	0,6	0,20	0,3	0,10
1 500	2,25	0,563	2,7	0,43	0,9	0,15	2,5	0,39	0,8	0,13	2,2	0,34	0,8	0,12	1,9	0,30	0,7	0,10	1,6	0,26	0,6	0,10	1,1	0,2	0,3	0,10	0,6	0,20	0,3	0,10
1 000	1,50	0,375	2,8	0,29	1,0	0,10	2,5	0,26	1,0	0,10	2,2	0,23	0,8	0,10	2,0	0,20	0,7	0,10	1,7	0,18	0,6	0,10	1,1	0,1	0,4	0,10	0,6	0,20	0,3	0,10
750	1,13	0,281	2,8	0,22	1,0	0,10	2,5	0,20	1,3	0,10	2,3	0,18	0,8	0,10	2,0	0,16	0,7	0,10	1,7	0,13	0,6	0,10	1,1	0,1	0,4	0,10	0,6	0,20	0,3	0,10
600	0,90	0,225	2,9	0,18	1,0	0,10	2,6	0,16	1,3	0,10	2,3	0,14	0,8	0,10	2,0	0,13	0,7	0,10	1,7	0,11	0,6	0,10	1,1	0,1	0,4	0,10	0,6	0,20	0,3	0,10
500	0,75	0,188	2,9	0,15	1,0	0,10	2,6	0,14	1,5	0,10	2,3	0,12	0,9	0,10	2,0	0,11	0,8	0,10	1,7	0,10	0,7	0,10	1,1	0,1	0,4	0,10	0,6	0,20	0,3	0,10
300	0,45	0,113	2,5	0,10	1,3	0,10	2,8	0,10	1,5	0,10	2,4	0,10	0,9	0,10	2,1	0,10	0,8	0,10	1,8	0,10	0,7	0,10	1,1	0,1	0,4	0,10	0,6	0,20	0,3	0,10
100	0,15	0,038	2,5	0,10	1,3	0,10	2,8	0,10	1,5	0,10	2,5	0,10	1,0	0,10	2,1	0,10	0,9	0,10	1,8	0,10	0,7	0,10	1,1	0,1	0,5	0,10	0,6	0,20	0,3	0,10
50	0,08	0,019	2,5	0,10	1,3	0,10	2,8	0,10	1,5	0,10	2,5	0,10	1,0	0,10	2,2	0,10	0,9	0,10	1,9	0,10	0,8	0,10	1,1	0,1	0,5	0,10	0,6	0,20	0,3	0,10

HSE 36.1 Tige filetée Tr 24x5


n	Vitesse o	de levage		F=10	[kN]			F=9	[kN]			F=8	[kN]			F=7	[kN]			F=6	[kN]			F=4	[kN]			F=2	[kN]	
[1/min]	[m/r	min.]	1	V	- 1	_	1	V	l i	-	1	J	l	-	1	V	- 1	Ļ	1	V	l l	_	1	V	L	-	1	V		Ļ
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	3,0	0,750	4,4	1,4	1,5	0,5	4,0	1,3	1,3	0,4	3,5	1,1	1,2	0,4	3,1	1,0	1,0	0,4	2,7	0,9	0,9	0,3	1,8	0,6	0,6	0,2	0,9	0,3	0,3	0,1
2500	2,5	0,625	4,4	1,2	1,5	0,4	4,0	1,1	1,3	0,4	3,5	1,0	1,2	0,3	3,1	0,8	1,0	0,3	2,7	0,7	0,9	0,3	1,8	0,5	0,6	0,2	0,9	0,3	0,3	0,1
2 000	2,0	0,500	4,5	1,0	1,5	0,3	4,0	0,9	1,4	0,3	3,6	0,8	1,2	0,3	3,1	0,7	1,1	0,3	2,7	0,6	0,9	0,2	1,8	0,4	0,6	0,2	0,9	0,2	0,3	0,1
1 500	1,5	0,375	4,5	0,7	1,6	0,3	4,1	0,7	1,4	0,3	3,6	0,6	1,3	0,2	3,2	0,5	1,1	0,2	2,7	0,5	1,0	0,2	1,8	0,3	0,6	0,1	0,9	0,2	0,3	0,1
1 000	1,0	0,250	4,6	0,5	1,7	0,2	4,2	0,5	1,5	0,2	3,7	0,4	1,3	0,2	3,3	0,4	1,2	0,2	2,8	0,3	1,0	0,1	1,9	0,2	0,7	0,1	0,9	0,1	0,3	0,1
750	0,75	0,188	4,7	0,4	1,7	0,2	4,3	0,4	1,6	0,2	3,8	0,3	1,4	0,1	3,3	0,3	1,2	0,1	2,8	0,2	1,0	0,1	1,9	0,2	0,7	0,1	1,0	0,1	0,4	0,1
500	0,50	0,125	4,9	0,3	1,8	0,1	4,4	0,3	1,7	0,1	3,9	0,2	1,5	0,1	3,4	0,2	1,3	0,1	2,9	0,2	1,1	0,1	2,0	0,1	0,7	0,1	1,0	0,1	0,4	0,1
300	0,30	0,075	5,0	0,2	2,0	0,1	4,5	0,2	1,8	0,1	4,0	0,2	1,6	0,1	3,5	0,1	1,4	0,1	3,0	0,1	1,2	0,1	2,0	0,1	0,8	0,1	1,0	0,1	0,4	0,1
100	0,10	0,025	5,2	0,1	2,1	0,1	4,7	0,1	1,9	0,1	4,2	0,1	1,7	0,1	3,7	0,1	1,5	0,1	3,1	0,1	1,3	0,1	2,1	0,1	0,9	0,1	1,1	0,1	0,4	0,1
50	0,05	0,013	5,3	0,1	2,2	0,1	4,8	0,1	2,0	0,1	4,3	0,1	1,8	0,1	3,7	0,1	1,6	0,1	3,2	0,1	1,3	0,1	2,1	0,1	0,9	0,1	1,1	0,1	0,4	0,1

HSE 50.1 Tige filetée Tr 40x8

n	Vitesse o	de levage		F=25	[kN]			F=22,	5 [kN]			F=20,0	00 [kN]			F=17,	5 [kN]			F=1	5 [kN]			F=10	[kN]			F=5	[kN]	
[1/min]	[m/r	min.]	l l	J		_	1	J	L		N	J	1		l 1	J	L	_	N	J	l I	_	1	V	l I	_	1	V	l	.
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	4,00	1,000	15,4	4,8	4,9	1,5	13,8	4,3	4,4	1,4	12,3	3,9	3,9	1,2	10,8	3,4	3,4	1,1	9,2	2,9	2,9	0,9	6,2	1,9	2,0	0,6	3,1	1,0	1,0	0,3
2500	3,33	0,833	15,5	4,1	5,0	1,3	13,9	3,6	4,5	1,2	12,4	3,2	4,0	1,0	10,8	2,8	3,5	0,9	9,3	2,4	3,0	0,8	6,2	1,6	2,0	0,5	3,1	0,8	1,0	0,3
2 000	2,67	0,667	15,6	3,3	5,1	1,1	14,0	2,9	4,6	1,0	12,5	2,6	4,1	0,8	10,9	2,3	3,5	0,7	9,4	2,0	3,0	0,6	6,2	1,3	2,0	0,4	3,1	0,7	1,0	0,2
1 500	2,00	0,500	15,8	2,5	5,2	0,8	14,2	2,2	4,7	0,7	12,6	2,0	4,2	0,7	11,1	1,7	3,7	0,6	9,5	1,5	3,1	0,5	6,3	1,0	2,1	0,3	3,2	0,5	1,0	0,2
1 000	1,33	0,333	16,1	1,7	5,5	0,6	14,5	1,5	5,0	0,5	12,9	1,4	4,4	0,5	11,3	1,2	3,9	0,4	9,7	1,0	3,3	0,3	6,5	0,7	2,2	0,2	3,2	0,3	1,1	0,1
750	1,00	0,250	16,4	1,3	5,8	0,5	14,8	1,2	5,2	0,4	13,1	1,0	4,6	0,4	11,5	0,9	4,1	0,3	9,9	0,8	3,5	0,3	6,6	0,5	2,3	0,2	3,3	0,3	1,2	0,1
500	0,67	0,167	16,8	0,9	6,2	0,3	15,2	0,8	5,6	0,3	13,5	0,7	4,9	0,3	11,8	0,6	4,3	0,2	10,1	0,5	3,7	0,2	6,7	0,3	2,5	0,1	3,4	0,2	1,2	0,1
300	0,40	0,100	17,4	0,5	6,6	0,2	15,7	0,5	6,0	0,2	13,9	0,4	5,3	0,2	12,2	0,4	4,6	0,1	10,4	0,3	4,0	0,1	7,0	0,2	2,7	0,1	3,5	0,1	1,3	0,1
100	0,13	0,033	18,4	0,2	7,5	0,1	16,5	0,2	6,7	0,1	14,7	0,1	6,0	0,1	12,9	0,1	5,2	0,1	11,0	0,1	4,5	0,1	7,3	0,1	3,0	0,1	3,7	0,1	1,5	0,1
50	0,07	0,017	18,7	0,1	7,7	0,1	16,9	0,1	6,9	0,1	15,0	0,1	6,2	0,1	13,1	0,1	5,4	0,1	11,2	0,1	4,6	0,1	7,5	0,1	3,1	0,1	3,7	0,1	1,5	0,1

HSE 63.1 Tige filetée Tr 50x9

n	Vitesse o	e de levage F=50 [kN] l/min.] N) [kN]			F=40	[kN]			F=30	[kN]			F=20	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]	
[1/min]	[m/r	min.]	N	J	L	-	_ N	J	L		1	J	L	-	1	J	L	-	N	J	l l	-	N	J	I	-	1	V	l	
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	3,86	0,964	31,5	9,9	10,2	3,2	25,2	7,9	8,1	2,6	18,9	5,9	6,1	1,9	12,6	4,0	4,1	1,3	6,3	2,0	2,0	0,6	3,1	1,0	1,0	0,3	1,6	0,5	0,5	0,2
2500	3,21	0,804	31,7	8,3	10,3	2,7	25,3	6,6	8,3	2,2	19,0	5,0	6,2	1,6	12,7	3,3	4,1	1,1	6,3	1,7	2,1	0,5	3,2	0,8	1,0	0,3	1,6	0,4	0,5	0,1
2 000	2,57	0,643	31,9	6,7	10,5	2,2	25,5	5,3	8,4	1,8	19,1	4,0	6,3	1,3	12,7	2,7	4,2	0,9	6,4	1,3	2,1	0,4	3,2	0,7	1,0	0,2	1,6	0,3	0,5	0,1
1 500	1,93	0,482	32,3	5,1	10,8	1,7	25,8	4,1	8,7	1,4	19,4	3,0	6,5	1,0	12,9	2,0	4,3	0,7	6,5	1,0	2,2	0,3	3,2	0,5	1,1	0,2	1,6	0,3	0,5	0,1
1 000	1,29	0,321	33,0	3,5	11,5	1,2	26,4	2,8	9,2	1,0	19,8	2,1	6,9	0,7	13,2	1,4	4,6	0,5	6,6	0,7	2,3	0,2	3,3	0,3	1,1	0,1	1,7	0,2	0,6	0,1
750	0,96	0,241	33,6	2,6	12,1	0,9	26,9	2,1	9,7	0,8	20,1	1,6	7,2	0,6	13,4	1,1	4,8	0,4	6,7	0,5	2,4	0,2	3,4	0,3	1,2	0,1	1,7	0,1	0,6	0,1
500	0,64	0,161	34,6	1,8	13,0	0,7	27,7	1,4	10,4	0,5	20,8	1,1	7,8	0,4	13,8	0,7	5,2	0,3	6,9	0,4	2,6	0,1	3,5	0,2	1,3	0,1	1,7	0,1	0,7	0,1
300	0,39	0,096	36,1	1,1	14,3	0,4	28,9	0,9	11,4	0,3	21,7	0,7	8,6	0,2	14,4	0,4	5,7	0,2	7,2	0,2	2,9	0,1	3,6	0,1	1,4	0,1	1,8	0,1	0,7	0,1
100	0,13	0,032	38,9	0,4	16,6	0,1	31,1	0,3	13,3	0,1	23,3	0,2	10,0	0,1	15,6	0,2	6,6	0,1	7,8	0,1	3,3	0,1	3,9	0,1	1,7	0,1	1,9	0,1	0,8	0,1
50	0,06	0,016	40,0	0,2	17,5	0,1	32,0	0,2	14,0	0,1	24,0	0,1	10,5	0,1	16,0	0,1	7,0	0,1	8,0	0,1	3,5	0,1	4,0	0,1	1,8	0,1	2,0	0,1	0,9	0,1

statique uniquement (dynamique non autorisée)

Durée de vie variant entre 100 et 500 heuers

3.4 Caractéristiques techniques

HSE 80.1 Tige filetée Tr 60x12

n	Vitesse o	de levage		F=10	0 [kN]			F=80	[kN]			F=60	[kN]			F=40	[kN]			F=20	[kN]			F=10	[kN]			F=5	[kN]	
[1/min]	[m/r	nin.]	1	J	[_	N	1	L		1	J	l	_	N	J	l	_	N	J	l	_	1	1	l	_	1	V	1	_
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	4,500	1,125	67,7	21,3	21,7	6,8	54,2	17,0	17,3	5,5	40,6	12,8	13,0	4,1	27,1	8,5	8,7	2,7	13,6	4,3	4,3	1,4	6,8	2,2	2,2	0,7	3,4	1,1	1,1	0,4
2500	3,750	0,938	68,0	17,8	21,9	5,8	54,4	14,3	17,5	4,6	40,8	10,7	13,2	3,5	27,2	7,1	8,8	2,3	13,6	3,6	4,4	1,2	6,8	1,8	2,2	0,6	3,4	0,9	1,1	0,3
2 000	3,000	0,750	68,4	14,4	22,3	4,7	54,8	11,5	17,9	3,8	41,1	8,6	13,4	2,8	27,4	5,8	9,0	1,9	13,7	2,9	4,5	1,0	6,9	1,5	2,3	0,5	3,4	0,8	1,1	0,3
1 500	2,250	0,563	69,2	10,9	23,0	3,6	55,4	8,7	18,4	2,9	41,6	6,5	13,8	2,2	27,7	4,4	9,2	1,5	13,9	2,2	4,6	0,8	6,9	1,1	2,3	0,4	3,5	0,6	1,2	0,2
1 000	1,500	0,375	70,7	7,4	24,4	2,6	56,6	5,9	19,5	2,1	42,5	4,5	14,6	1,6	28,3	3,0	9,8	1,1	14,2	1,5	4,9	0,6	7,1	0,8	2,5	0,3	3,6	0,4	1,2	0,2
750	1,125	0,281	72,1	5,7	25,7	2,0	57,7	4,6	20,5	1,6	43,3	3,4	15,4	1,2	28,9	2,3	10,3	0,8	14,4	1,2	5,1	0,4	7,2	0,6	2,6	0,2	3,6	0,3	1,3	0,1
500	0,750	0,188	74,6	3,9	27,9	1,5	59,7	3,1	22,3	1,2	44,8	2,4	16,7	0,9	29,9	1,6	11,2	0,6	14,9	0,8	5,6	0,3	7,5	0,4	2,8	0,2	3,7	0,2	1,4	0,1
300	0,450	0,113	78,3	2,5	31,3	1,0	62,7	2,0	25,0	0,8	47,0	1,5	18,8	0,6	31,4	1,0	12,5	0,4	15,7	0,5	6,3	0,2	7,9	0,3	3,2	0,1	3,9	0,1	1,6	0,1
100	0,150	0,038	86,2	0,9	38,3	0,4	69,0	0,7	30,6	0,3	51,8	0,6	23,0	0,3	34,5	0,4	15,3	0,2	17,3	0,2	7,7	0,1	8,6	0,1	3,8	0,1	4,3	0,1	1,9	0,1
50	0,075	0,019	89,7	0,5	41,3	0,2	71,8	0,4	33,0	0,2	53,8	0,3	24,8	0,2	35,9	0,2	16,5	0,1	18,0	0,1	8,3	0,1	9,0	0,1	4,2	0,1	4,5	0,1	2,1	0,1

HSE 100.1 Tige filetée Tr 70x12

n	Vitocco	de levage		E_20	0 [kN]			E_16	0 [kN]			E_12	0 [kN]			E_10	0 [kN]			E_75	[kN]			E_ EC	[kN]			F=25	[[A]]	
					O [KIV]			1 = 10	O [KIN]			F=12	O [KIN]			F = 10	I [KIN]			F = 7 C	[KIN]			F=30	[KIN]			F=23	[KIA]	
[1/min]	[m/i	min.]	1	V		-	1 1	V	L		1	V	[-	N	V	l l	-	1 1	1	L	-	1 1	V	l L	_	N	J	L	-
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	4,500	1,125	148	46,4	45,9	14,4	118	37,1	36,7	11,6	88,6	27,9	27,6	8,7	73,9	23,2	23,0	7,2	55,4	17,4	17,2	5,4	37,0	11,6	11,5	3,6	18,5	5,8	5,8	1,8
2500	3,750	0,938	148	38,8	46,3	12,1	119	31,1	37,0	9,7	88,9	23,3	27,8	7,3	74,1	19,4	23,2	6,1	55,6	14,6	17,4	4,6	37,1	9,7	11,6	3,0	18,6	4,9	5,8	1,6
2 000	3,000	0,750	149	31,2	46,9	9,9	119	25,0	37,5	7,9	89,3	18,7	28,1	5,9	74,4	15,6	23,5	4,9	55,8	11,7	17,6	3,7	37,2	7,8	11,7	2,5	18,6	3,9	5,9	1,3
1 500	2,250	0,563	150	23,6	48,0	7,6	120	18,9	38,4	6,0	90,0	14,2	28,8	4,6	75,1	11,8	24,0	3,8	56,3	8,9	18,0	2,9	37,5	5,9	12,0	1,9	18,8	3,0	6,0	1,0
1 000	1,500	0,375	153	16,0	50,3	5,3	122	12,8	40,2	4,2	91,6	9,6	30,2	3,2	76,3	8,0	25,2	2,7	57,3	6,0	18,9	2,0	38,2	4,0	12,6	1,3	19,1	2,0	6,3	0,7
750	1,125	0,281	155	12,2	52,6	4,2	124	9,8	42,1	3,3	93,1	7,3	31,6	2,5	77,6	6,1	26,3	2,1	58,2	4,6	19,7	1,6	38,8	3,1	13,2	1,0	19,4	1,6	6,6	0,6
500	0,750	0,188	160	8,4	56,9	3,0	128	6,7	45,5	2,4	96,0	5,1	34,2	1,8	80,0	4,2	28,5	1,5	60,0	3,2	21,4	1,1	40,0	2,1	14,2	0,8	20,0	1,1	7,1	0,4
300	0,450	0,113	168	5,3	63,9	2,0	134	4,2	51,2	1,6	101	3,2	38,4	1,2	83,9	2,7	32,0	1,0	62,9	2,0	24,0	0,8	42,0	1,4	16,0	0,5	21,0	0,7	8,0	0,3
100	0,150	0,038	187	2,0	80,8	0,9	150	1,6	64,6	0,7	112	1,2	48,5	0,6	93,3	1,0	40,4	0,5	70,0	0,8	30,3	0,4	46,7	0,5	20,2	0,2	23,4	0,3	10,1	0,2
50	0,075	0,019	196	1,1	88,9	0,5	157	0,8	71,1	0,4	118	0,6	53,4	0,3	98,0	0,6	44,5	0,3	73,5	0,4	33,4	0,2	49,0	0,3	22,2	0,2	24,5	0,2	11,1	0,2

HSE 125.1 Tige filetée Tr 100x16

n	Vitesse o	de levage		F=35	0 [kN]			F=30	0 [kN]			F=25	0 [kN]			F=200) [kN]			F=15) [kN]			F=100) [kN]			F=50	[kN]	
[1/min]		nin.]	N		ĺ Ĺ	-	1	١	Ĺ Ĺ		1	J	ĺ í	_	1		Ĺ	-	N	١	Ĺ		1	V	Ĺ	_	1	V	Ĺ	L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	4,50	1,50	271	85	106	33	232	73	91	29	194	61	76	24	155	49	61	19	116	37	45	15	78	25	30	9,5	39	13	15	4,8
2500	3,75	1,25	272	71	106	28	233	61	91	24	194	51	76	20	155	41	61	16	117	31	46	12	78	21	30	8,0	39	11	15	4,0
2 000	3,00	1,00	273	57	107	23	234	49	92	19	195	41	77	16	156	33	62	13	117	25	46	9,6	78	17	31	6,4	39	8,2	15	3,2
1 500	2,25	0,75	275	43	109	17	236	37	93	15	196	31	78	13	157	25	62	9,8	118	19	47	7,4	79	13	31	4,9	39	6,2	16	2,5
1 000	1,50	0,50	279	29	113	12	239	25	97	10	199	21	81	8,5	159	17	65	6,8	120	13	49	5,1	80	8,4	32	3,4	40	4,2	16	1,7
750	1,13	0,38	284	23	117	9,2	243	19	100	7,9	203	16	84	6,6	162	13	67	5,3	122	9,6	50	4,0	81	6,4	34	2,7	41	3,2	17	1,4
500	0,75	0,25	292	16	126	6,6	251	13	108	5,7	209	11	90	4,7	167	8,8	72	3,8	126	6,6	54	2,8	84	4,4	36	1,9	42	2,2	18	1,0
300	0,45	0,15	308	10	140	4,4	264	8,3	120	3,8	220	6,9	100	3,2	176	5,6	80	2,6	132	4,2	60	1,9	88	2,8	40	1,3	44	1,4	20	0,7
100	0,15	0,05	349	3,7	178	1,9	299	3,2	153	1,6	250	2,7	127	1,4	200	2,1	102	1,1	150	1,6	77	0,8	100	1,1	51	0,6	50	0,6	26	0,3
50	0,08	0,03	372	2,0	198	1,1	318	1,7	170	0,9	265	1,4	142	0,8	212	1,2	114	0,6	160	0,9	85	0,5	106	0,6	57	0,3	53	0,3	29	0,2

HSE 140 Tige filetée Tr 120x16

n	Vitesse o	de levage		F=50	0 [kN]			F=40	0 [kN]			F=30	0 [kN]			F=25) [kN]			F=20	0 [kN]			F=15) [kN]			F=10) [kN]	
[1/min]	(m/i	min)	1	V		L	1	V	l	-	1	V	1	L	1	J	- 1	_	1	V	l	L	l l	V	I	-	1	V		L
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000																														
2500																														
2 000																														
1 500																														
1 000																sur d	emano	le												
750																														
500																														
300																														
100																														
50																														

HSE 200.1 Tige filetée Tr 160x20

_	161	la la		F 1 00	14.11 00				F 000	11.4.17			F (0	[[4.1] 0			F 400	FL A . IT		F 20	114-11 0			F 10	TLA.II C			F F	11.4.17	_
n		le levage		F=1 U(00 [kN]				F=8U) [kN]			r=60	0 [kN]			F=400	[KIN]		F=20	0 [kN]			F=100	J [KIN]			r=50	[kN]	
[1/min]	[m/r	nin.]	N	1		_	1	V	L	-	1	V		L	1	V		_	1	V	l l	-	1	V	L	-	1	V	[Ļ
	N	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	4,50	1,50	905	284	342	108	724	228	274	86	543	171	205	65	362	114	137	43	181	57	69	22	91	29	34	11	46	15	17	5,4
2500	3,75	1,25	906	237	343	90	725	190	274	72	544	143	206	54	362	95	137	36	181	48	69	18	91	24	34	9,0	46	12	17	4,5
2 000	3,00	1,00	907	190	344	72	726	152	275	58	545	114	207	44	363	76	138	29	182	38	69	15	91	19	35	7,2	46	10	17	3,6
1 500	2,25	0,75	911	143	347	55	729	115	278	44	547	86	208	33	364	58	139	22	182	29	70	11	91	15	35	5,5	46	7,2	18	2,8
1 000	1,50	0,50	919	96	354	37	735	77	283	30	551	58	213	23	368	39	142	15	184	19	71	7,5	92	10	36	3,8	46	4,8	18	1,9
750	1,13	0,38	928	73	363	29	742	59	290	23	557	44	218	17	371	29	145	12	186	15	73	5,7	93	7,3	37	2,9	47	3,7	18	1,5
500	0,75	0,25	947	50	381	20	758	40	305	16	569	30	229	12	379	20	153	8,0	190	10	77	4,0	95	5,0	38	2,0	48	2,5	19	1,0
300	0,45	0,15	988	31	419	13	790	25	335	11	593	19	252	7,9	395	13	168	5,3	198	6,3	84	2,7	99	3,1	42	1,4	50	1,6	21	0,7
100	0,15	0,05	1128	12	550	5,8	903	9,5	440	4,7	677	7,1	330	3,5	452	4,8	220	2,3	226	2,4	110	1,2	113	1,2	55	0,6	57	0,6	28	0,3
50	0,08	0,03	1223	6,4	637	3,4	978	5,1	509	2,7	734	3,9	382	2,0	489	2,6	255	1,4	245	1,3	128	0,7	123	0,7	64	0,4	61	0,3	32	0,2

- Durée de vie > 500 heures
- statique uniquement (dynamique non autorisée)
- Durée de vie variant entre 100 et 500 heuers

3.4 Caractéristiques techniques

3.4.3.4 Série SHG (Méchanismes de levage "grande vitesse")

Nombre de tours, puissance nécessaire et vitesse de levage admissible pour les rapports de transmission 2 :1 et 3 :1 avec axe à un seul filet trapézoïdal montant (type 1). Toutes les puissances indiquées sont calculées en tenant compte de la force de levage dynamique. Pour des durées d'utilisation < 10 %/h, ou s'il s'agit d'une exécution avec axe fileté tournant (type 2), il est possible d'augmenter les puissances d'entraînement maximales admissibles. Dans ce cas, veuillez consulter nos spécialistes.

3

G 15 Tige filetée Tr 24x5

n	Vitesse o	de levage		F=15	[kN]			F=12,	5 [kN]			F=10	[kN]			F=7,5	[kN]			F=5	[kN]			F=2,5	5 [kN]			F=1	[kN]	
[1/min]	[m/r	nin.]	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3 :	:1
	2:1	3:1	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	7,5	5	16	4,6	12	3,2	14	3,9	10	2,8	11	3,2	8	2,3	8,9	2,6	6,4	1,9	6,5	1,9	5	1,4	4,1	1,2	3,2	1	2,7	0,8	2,3	0,7
2250	5,6	3,75	16	3,5	12	2,4	14	3	10	2,1	11	2,4	8	1,8	8,9	1,9	6,4	1,4	6,5	1,4	5	1,1	4,1	0,9	3,2	0,7	2,7	0,6	2,3	0,5
1 500	3,75	2,5	16	2,3	12	1,6	14	2	10	1,4	11	1,6	8	1,2	8,9	1,3	6,4	1	6,5	1	5	0,7	4,1	0,6	3,2	0,5	2,7	0,4	2,3	0,4
1 000	2,5	1,67	16	1,6	12	1,1	14	1,3	10	1	11	1,1	8	0,8	8,9	0,9	6,4	0,7	6,5	0,7	5	0,5	4,1	0,4	3,2	0,4	2,7	0,3	2,3	0,3
750	1,88	1,25	16	1,2	12	0,8	14	1	10	0,7	11	0,8	8	0,6	8,9	0,7	6,4	0,5	6,5	0,5	5	0,4	4,1	0,3	3,2	0,3	2,7	0,2	2,3	0,2
500	1,25	0,83	16	0,8	12	0,6	14	0,7	10	0,5	11	0,6	8	0,4	8,9	0,5	6,4	0,3	6,5	0,4	5	0,3	4,1	0,2	3,2	0,2	2,7	0,2	2,3	0,1
250	0,63	0,42	16	0,4	12	0,3	14	0,4	10	0,3	11	0,3	8	0,2	8,9	0,3	6,4	0,2	6,5	0,2	5	0,2	4,1	0,1	3,2	0,1	2,7	0,1	2,3	0,1

G 25 Tige filetée Tr 35x8

n	Vitesse o	de levage		F=25	[kN]			F=20	[kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]			F=1	[kN]	
[1/min]	[m/r	min.]	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1
	2:1	3:1	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW												
3 000	12	8	40	13	28	8,6	33	10	23	7	25	7,8	18	5,6	18	5,5	13	3,9	10	3,2	8	2,4	7	2	6	1,6	5	1,3	4	1,1
2250	9	6	40	9,4	28	6,5	33	7,7	23	5,4	25	5,9	18	4,2	18	4,2	13	3	10	2,4	8	1,9	7	1,6	6	1,3	5	1	4	0,9
1 500	6	4	40	6,3	28	4,4	33	5,2	23	3,6	25	4	18	2,8	18	2,8	13	2,1	10	1,7	8	1,3	7	1,1	6	0,9	5	0,7	4	0,7
1 000	4	2,6	40	4,2	28	2,9	33	3,5	23	2,4	25	2,7	18	1,9	18	1,9	13	1,4	10	1,1	8	0,9	7	0,7	6	0,6	5	0,5	4	0,5
750	3	2	40	3	28	2,1	33	2,5	23	1,7	25	1,9	18	1,3	18	1,3	13	0,9	10	0,7	8	0,5	7	0,4	6	0,3	5	0,3	4	0,2
500	2	1,3	40	2	28	1,4	33	1,6	23	1,1	25	1,3	18	0,9	18	0,9	13	0,6	10	0,5	8	0,4	7	0,3	6	0,2	5	0,2	4	0,2
250	1	0,6	40	1,1	28	0,7	33	0,9	23	0,6	25	0,7	18	0,5	18	0,5	13	0,4	10	0,3	8	0,2	7	0,2	6	0,2	5	0,1	4	0,1

G 50 Tige filetée Tr 40x7

n	Vitesse o	de levage		F=50	[kN]			F=30	[kN]			F=20	[kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]	
[1/min]	[m/r	min.]	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1
	2:1	3:1	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW																
3 000	10,5	7	80	22	54	15	48	14	33	9,3	33	9,3	23	6,4	26	7,1	18	5	18	5	13	3,5	11	2,8	8	2,1	7	1,8	5,2	1,4
2250	7,9	5,25	80	16	54	11	48	10	33	7	33	7	23	4,8	26	5,4	18	3,7	18	3,7	13	2,7	11	2,1	8	1,6	7	1,3	5,2	1,1
1 500	5,2	3,5	80	11	54	7,5	48	6,8	33	4,7	33	4,7	23	3,2	26	3,6	18	2,5	18	2,5	13	1,8	11	1,4	8	1,1	7	0,9	5,2	0,7
1 000	3,5	2,3	80	7,5	54	5	48	4,6	33	3,1	33	3,1	23	2,2	26	2,4	18	1,7	18	1,7	13	1,2	11	1	8	0,7	7	0,6	5,2	0,5
750	2,6	1,75	80	5	54	3,8	48	3,4	33	2,3	33	2,4	23	1,6	26	1,8	18	1,3	18	1,3	13	0,9	11	0,7	8	0,6	7	0,5	5,2	0,4
500	1,75	1,17	80	3,8	54	2,5	48	2,3	33	1,6	33	1,6	23	1,1	26	1,2	18	0,9	18	0,9	13	0,6	11	0,5	8	0,4	7	0,3	5,2	0,3
250	0,87	0,58	80	1,9	54	1,4	48	1,2	33	0,8	33	0,8	23	0,6	26	0,6	18	0,5	18	0,5	13	0,3	11	0,3	8	0,2	7	0,2	5,2	0,2

G 90 Tige filetée Tr 60x9

n	Vitesse o	le levage		F=90	[kN]			F=75	[kN]			F=50	[kN]			F=25	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]	
[1/min]	[m/r	nin.]	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1	2	:1	3	:1
	2 :1	3:1	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	13,5	9	207	58	140	39	174	49	118	33	119	33	81	22	63	17	44	12	30	7,6	22	5,5	19	4,5	14	3,4	14	2,9	10	2,4
2250	10,1	6,75	207	44	140	29	174	37	118	25	119	25	81	17	63	13	44	8,9	30	5,7	22	4,1	19	3,4	14	2,6	14	2,2	10	1,8
1 500	6,75	4,5	207	29	140	20	174	24	118	16	119	16	81	11	63	8,5	44	5,9	30	3,8	22	2,8	19	2,3	14	1,7	14	1,5	10	1,2
1 000	4,5	3	207	19	140	13	174	16	118	11	119	11	81	7,5	63	5,7	44	4	30	2,6	22	1,9	19	1,5	14	1,2	14	1	10	0,8
750	3,37	2,25	207	15	140	10	174	12	118	8,2	119	8,2	81	5,6	63	4,3	44	3	30	1,9	22	1,4	19	1,1	14	0,9	14	0,8	10	0,6
500	2,25	1,5	207	9,7	140	6,6	174	8,1	118	5,5	119	5,5	81	3,8	63	2,9	44	2	30	1,3	22	1	19	0,8	14	0,6	14	0,5	10	0,4
250	1,12	0,75	207	4,9	140	3,3	174	4,1	118	2,8	119	2,8	81	1,9	63	1,5	44	1	30	0,7	22	0,5	19	0,4	14	0,3	14	0,3	10	0,2

Durée d'utilisation ED 20 % sur 1 heure ou 30 % sur 10 minutes à une température ambiante de 20°C

charge statique uniquement (dynamique non autorisée)

durée d'utilisation ED 10 % sur 1 heure et temp. ambiante de 20°C

3.4 Technical information

3.4.4 Tableaux de puissances (vérins à vis à billes Ku)

3.4.4.1 Série HSE vis à billes (Vérins à vis "hautes performances")

Nombre de tours, puissance nécessaire et vitesse de levage admissible pour un rapport de transmission "N" avec vérins à vis à billes (type 1). Toutes les puissances indiquées sont calculées en tenant compte de la force de levage dynamique pour une durée d'utilisation de 20 %/h. Pour le type de construction 2, les vérins à vis à billes peuvent être réalisés en exécution renforcée.

HSE 36.1 Tige filetée Ku 20x10; 20x5

n	Vitesse o	de levage		F=10	[kN]			F=9	[kN]			F=8	[kN]			F=7	[kN]			F=6	[kN]			F=4	[kN]			F=2	[kN]	
[1/min]	[m/r	nin.]	20:	x10	20	х5	20>	<10	20	х5	20	(10	20	х5	20:	ĸ10	20	x5	20:	x10	20	х5	20)	(10	20	х5	20	(10	20:	х5
Ku 20x	10	5	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	6,0	3,0	4,2	1,3	2,1	0,7	3,8	1,2	1,9	0,6	3,4	1,1	1,7	0,5	2,9	0,9	1,5	0,5	2,5	0,8	1,3	0,4	1,7	0,5	0,8	0,3	0,8	0,3	0,1	0,1
2500	5	2,5	4,2	1,1	2,1	0,6	3,8	1	1,9	0,5	3,4	0,9	1,7	0,4	3	0,8	1,5	0,4	2,5	0,7	1,3	0,3	1,7	0,4	0,8	0,2	0,8	0,2	0,1	0,1
2 000	4	2,0	4,3	0,9	2,1	0,4	3,8	0,8	1,9	0,4	3,4	0,7	1,7	0,4	3	0,6	1,5	0,3	2,6	0,5	1,3	0,3	1,7	0,4	0,9	0,2	0,9	0,2	0,1	0,1
1 500	3	1,5	4,3	0,7	2,2	0,3	3,9	0,6	1,9	0,3	3,5	0,5	1,7	0,3	3	0,5	1,5	0,2	2,6	0,4	1,3	0,2	1,7	0,3	0,9	0,1	0,9	0,1	0,1	0,1
1 000	2	1,0	4,4	0,5	2,2	0,2	4	0,4	2	0,2	3,5	0,4	1,8	0,2	3,1	0,3	1,5	0,2	2,7	0,3	1,3	0,1	1,8	0,2	0,9	0,1	0,9	0,1	0,2	0,1
750	1,5	0,75	4,5	0,4	2,2	0,2	4	0,3	2	0,2	3,6	0,3	1,8	0,1	3,1	0,2	1,6	0,1	2,7	0,2	1,3	0,1	1,8	0,1	0,9	0,1	0,9	0,1	0,2	0,1

HSE 50.1 Tige filetée Ku 32x10; 32x5

n	Vitesse o	de levage		F=25	[kN]			F=22,	5 [kN]			F=20,	0 [kN]			F=17,	5 [kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]	
[1/min]	[m/r	nin.]	32)	<10	32	x5	32)	<10	32	x5	32	<10	32	x5	32:	ĸ10	32	x5	32)	<10	32	х5	32)	(10	32	x5	32	<10	32	x5
Ku 32x	10	5	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	5,0	2,5	8,5	2,7	4,3	1,4	7,7	2,4	3,8	1,2	6,8	2,1	3,4	1,1	6	1,9	3	1	5,1	1,6	2,6	0,8	3,4	1,1	1,7	0,6	1,7	0,5	0,9	0,3
2500	4,2	2,1	8,6	2,2	4,3	1,1	7,7	2	3,9	1	6,9	1,8	3,4	0,9	6	1,6	3	0,8	5,2	1,3	2,6	0,7	3,4	0,9	1,7	0,5	1,7	0,4	0,9	0,2
2 000	3,4	1,7	8,7	1,8	4,3	0,9	7,8	1,6	3,9	0,8	6,9	1,4	3,5	0,7	6,1	1,3	3	0,7	5,2	1,1	2,6	0,6	3,5	0,7	1,7	0,4	1,7	0,4	0,9	0,2
1 500	2,4	1,2	8,8	1,4	4,4	0,7	7,9	1,2	3,9	0,6	7	1,1	3,5	0,6	6,1	1	3,1	0,5	5,3	0,8	2,6	0,4	3,5	0,6	1,8	0,3	1,8	0,3	0,9	0,2
1 000	1,6	0,8	8,9	0,9	4,5	0,5	8	0,8	4	0,4	7,2	0,7	3,6	0,4	6,3	0,7	3,1	0,4	5,4	0,6	2,7	0,3	3,6	0,4	1,8	0,2	1,8	0,2	0,9	0,1
750	1,2	0,6	9,1	0,7	4,6	0,4	8,2	0,6	4,1	0,3	7,3	0,6	3,6	0,3	6,4	0,5	3,2	0,3	5,5	0,4	2,7	0,2	3,6	0,3	1,8	0,2	1,8	0,1	0,9	0,1

HSE 63.1 Tige filetée Ku 40x24; 40x10

n	Vitesse o	le levage		F=50	[kN]			F=40	[kN]			F=30) [kN]			F=20	[kN]			F=10	[kN]			F=5	[kN]			F=2,	5 [kN]	
[1/min]	[m/r	nin.]	40)	(24	40:	x10	40	(24	40>	(10	40>	(24	40	(10	40:	×24	40:	k10	40)	(24	40)	(10	40>	(24	40	(10	40x	x24	40>	x10
Ku 40x	24	10	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	10,3	4,3	35	11	14	4,6	28	8,7	12	3,7	21	6,5	8,7	2,7	14	4,4	5,8	1,8	6,9	2,2	2,9	0,9	3,5	1,1	1,4	0,5	1,7	0,5	0,7	0,3
2500	8,57	3,55	35	9,1	15	3,8	28	7,3	12	3,1	21	5,5	8,7	2,3	14	3,7	5,8	1,5	7	1,8	2,9	0,8	3,5	0,9	1,5	0,4	1,7	0,5	0,7	0,2
2 000	6,86	2,85	35	7,4	15	3,1	28	5,9	12	2,5	21	4,4	8,8	1,9	14	2,9	5,9	1,3	7	1,5	2,9	0,6	3,5	0,7	1,5	0,3	1,8	0,4	0,7	0,2
1 500	5,14	2,15	36	5,6	15	2,4	28	4,5	12	1,9	21	3,4	8,9	1,4	14	2,2	5,9	1	7,1	1,1	3	0,5	3,6	0,6	1,5	0,3	1,8	0,3	0,7	0,1
1 000	3,43	1,45	36	3,8	15	1,6	29	3	12	1,3	22	2,3	9,1	1	15	1,5	6,1	0,7	7,3	0,8	3	0,3	3,6	0,4	1,5	0,2	1,8	0,2	0,8	0,1
750	2,57	1,05	37	2,9	15	1,2	30	2,3	12	1	22	1,7	9,3	0,8	15	1,2	6,2	0,5	7,4	0,6	3,1	0,3	3,7	0,3	1,5	0,1	1,9	0,1	0,8	0,1

HSE 80.1 Tige filetée Ku 50x24; 63x10

n	Vitesse o	de levage		100	[kN]			80	[kN]			60	[kN]			40	kN]			20	[kN]			10	[kN]			5 [kN]	
[1/min]	[m/r	min.]	50:	x24	63	x10	50:	x24	63)	<10	50:	(24	63:	x10	50:	ĸ24	63:	k10	50:	x24	63)	(10	50>	(24	633	<10	50)	(24	63)	(10
Ku 50/63	24	10	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	9,0	3,7	60	19	25	7,9	48	15	20	6,3	36	11	15	4,7	24	7,5	10	3,1	12	3,8	5	1,6	6	1,9	2,5	0,8	3	0,9	1,3	0,4
2500	7,4	3,1	60	16	25	6,6	48	13	20	5,3	36	9,5	15	4	24	6,3	10	2,6	12	3,2	5	1,3	6	1,6	2,5	0,7	3	0,8	1,3	0,3
2 000	6,0	2,5	61	13	25	5,3	48	10	20	4,2	36	7,6	15	3,2	24	5,1	10	2,1	12	2,5	5	1	6,1	1,3	2,5	0,5	3	0,6	1,3	0,3
1 500	4,4	1,85	61	9,6	26	4	49	7,7	20	3,2	37	5,8	15	2,4	24	3,8	10	1,6	12	1,9	5,1	0,8	6,1	1	2,6	0,4	3,1	0,5	1,3	0,2
1 000	3,0	1,25	62	6,5	26	2,7	50	5,2	21	2,2	37	3,9	16	1,6	25	2,6	10	1,1	12	1,3	5,2	0,5	6,2	0,7	2,6	0,3	3,1	0,3	1,3	0,1
750	2,3	0.95	64	5	27	2.1	51	4	21	1.7	38	3	16	1.3	25	2	11	0.8	13	1	5.3	0.4	6.4	0.5	2.7	0.2	3.2	0.2	1.3	0.1

HSE 100.1 Tige filetée Ku 63x20; 80x10

n	Vitesse o	de levage		F=20	0 [kN]			F=16	0 [kN]			F=12	0 [kN]			F=10	0 [kN]			F=75	[kN]			F=50	[kN]			F=25	[kN]	
[1/min]	[m/r	nin.]	63:	x20	80:	x10	63:	x20	80)	(10	63	(20	80:	x10	63:	x20	80	k10	63:	x20	80:	(10	63)	x20	80:	(10	63:	x20	80)	(10
Ku 63/80	20	10	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
3 000	7,5	3,75	98	31	49	15	79	25	39	12	59	19	29	9,3	49	15	25	7,7	37	12	18	5,8	25	7,7	12	3,9	12	3,9	6,1	2
2500	6,2	3,1	99	26	49	13	79	21	39	10	59	16	30	7,8	49	13	25	6,5	37	9,7	19	4,9	25	6,5	12	3,3	12	3,2	6,2	1,6
2 000	5,0	2,5	99	21	50	10	79	17	40	8,3	59	13	30	6,3	50	10	25	5,2	37	7,8	19	3,9	25	5,2	12	2,6	12	2,6	6,2	1,3
1 500	3,7	1,85	100	16	50	7,9	80	13	40	6,3	60	9,4	30	4,7	50	7,8	25	3,9	37	5,9	19	3	25	3,9	12	2	12	2	6,2	1
1 000	2,5	1,25	101	11	51	5,3	81	8,5	41	4,3	61	6,4	30	3,2	51	5,3	25	2,7	38	4	19	2	25	2,7	13	1,4	13	1,3	6,3	0,7
750	1,9	0,95	103	8,1	51	4,1	82	6,5	41	3,3	62	4,9	31	2,5	51	4	26	2	39	3	19	1,5	26	2	13	1	13	1	6,4	0,5

Durée de vie > 500 heures

statique uniquement (dynamique non autorisée)

Durée de vie variant entre 100 et 500 heuers

3.4 Technical information

3

3.4.4.2 Série SHG vis à billes Ku (Mécanismes de levage "grande vitesse")

Nombre de tours, puissance nécessaire et vitesse de levage admissible pour un rapport de transmission "N" avec vérins à vis à billes de levage (type 1). Toutes les puissances indiquées sont calculées en tenant compte de la force de levage dynamique pour une durée d'utilisation de 20 %/h. Pour le type de construction 2, les vérins à vis à billes peuvent être réalisés en exécution renforcée.

G 15 Tige filetée Ku 25x5

Vitesse de levage F=15 [kN] F=9.5 [kN] F=7 [kN] F=5 [kN] F=3 [kN] F=2 [kN] F=1 [kN] [1/min] 25x5 [m/min.] 25x5 25x5 Nm kW 8 2,2 8 1,9 8 1,5 8 1,1 8 0,8 Nm kW Nm kW 3,3 1 3,3 0,8 Nm 2,7 2,7 2,7 2,7 kW 0,8 0,7 0.6 0,4 5 7,5 Nm kW Nm kW 6,2 1,8 Nm kW 5 1,5 Ku 25) 1,9 1,5 1,1 0,8 1,5 1,2 1 0,8 0,5 4 4 4 4 3 000 6,25 5 3,75 2,6 2,1 1,6 1,1 1,5 1,2 0,9 0,6 2500 11 11 11 11 11 0,8 3,3 0,8 3,3 0,7 2 000 6,2 6,2 0,6 3,3 0,5 3,3 0,4 1 500 1 000 4 0,4 0,3

G 25 Tige filetée Ku 25x10; 25x5

n	Vitesse o	de levage		F=25	[kN]			F=20	[kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	[kN]			F=1	[kN]	
[1/min]	[m/r	min.]	25)	(10	25	x5	25)	(10	25	х5	25:	ĸ10	25	x5	25:	(10	25	x5	25)	(10	25	х5	25)	(10	25	х5	25:	x10	25	х5
Ku 25x	10	5	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW												
3 000	15,0	7,5	25	7,8	14	4,3	21	6,4	12	3,6	16	5	9,5	2,9	12	3,6	7	2,2	7	2,2	5	1,5	5	1,5	3,8	1,2	3,5	1,1	3,1	1
2500	12,5	6,25	25	6,5	14	3,6	21	5,4	12	3,1	16	4,2	9,5	2,5	12	3,1	7	1,9	7	1,9	5	1,3	5	1,3	3,8	1	3,5	1	3,1	0,9
2 000	10	5	25	5,3	14	3	21	4,4	12	2,5	16	3,4	9,5	2	12	2,5	7	1,6	7	1,6	5	1,1	5	1,1	3,8	0,9	3,5	0,8	3,1	0,7
1 500	7,5	3,75	25	4	14	2,2	21	3,3	12	1,9	16	2,6	9,5	1,5	12	1,9	7	1,2	7	1,2	5	0,8	5	0,8	3,8	0,7	3,5	0,6	3,1	6
1 000	5	2,5	25	2,7	14	1,5	21	2,2	12	1,3	16	1,7	9,5	1	12	1,3	7	0,8	7	0,8	5	0,6	5	0,6	3,8	0,5	3,5	0,4	3,1	0,4
750	3,8	1,87	25	1,9	14	1	21	1,5	12	0,8	16	1,2	9,5	0,6	12	0,8	7	0,5	7	0,5	5	0,3	5	0,3	3,8	0,2	3,5	0,2	3,1	0,2

G 50 Tige filetée Ku 32x10; 40x5

n	Vitesse o	de levage		F=40	[kN]			F=25	[kN]			F=20	[kN]			F=15	[kN]			F=10	[kN]			F=5	[kN]			F=2,5	5 [kN]	
[1/min]	[m/r	min.]	32)	(10	40)x5	32)	(10	40	x5	32)	ĸ10	40)x5	32)	(10	40)x5	32)	(10	40	х5	32x	10	40	х5	32)	ĸ10	40	Dx5
Ku32/40x	10	5	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW																
3 000	15,0	7,5	48	14	26	7,2	31	8,9	17	4,8	25	7,2	14	3,9	20	5,6	14	3,1	14	3,9	9	2,3	8	2,3	5,6	1,5	5	1,5	4,1	1,1
2500	12,5	6,25	48	12	26	6	31	7,4	17	4	25	6	14	3,3	20	4,7	14	2,6	14	3,3	9	1,9	8	1,9	5,6	1,2	5	1,2	4,1	0,9
2 000	10	5	48	9,2	26	4,8	31	5,8	17	3,2	25	4,8	14	2,6	20	3,7	14	2,1	14	2,6	9	1,5	8	1,6	5,6	1	5	1	4,1	0,7
1 500	7,5	3,75	48	6,9	26	3,6	31	4,4	17	2,4	25	3,6	14	2	20	2,8	14	1,6	14	2	9	1,2	8	1,2	5,6	0,8	5	0,8	4,1	0,6
1 000	5	2,5	48	4,6	26	2,4	31	3	17	1,6	25	2,4	14	1,3	20	1,9	14	1,1	14	1,3	9	0,8	8	0,8	5,6	0,5	5	0,5	4,1	0,4
750	3,8	1,87	48	3,5	26	1,8	31	2,3	17	1,2	25	1,9	14	1	20	1,4	14	0,8	14	1	9	0,6	8	0,6	5,6	0,4	5	0,4	4,1	0,3

G 90 Tige filetée Ku 63x10

n	Vitesse de levaç	e	F=9	0 [kN]		F=60) [kN]		F=40	[kN]		F=20	[kN]		F=15	[kN]		F=10) [kN]		F=5	-[kN]	
[1/min]	[m/min.]			63	x10		63)	(10		633	ĸ10		63>	<10		633	(10		63	(10		63)	x10
Ku 63x	10			Nm	kW		Nm	kW		Nm	kW		Nm	kW		Nm	kW		Nm	kW		Nm	kW
3 000	15			116	32		80	23		55	16		30	8,3		25	6,7		19	4,8		13	3,1
2500	12,5			116	28		80	19		55	13		30	7		25	5,5		19	4		13	2,6
2 000	10			116	22		80	15		55	11		30	5,6		25	4,4		19	3,2		13	2
1 500	7,5			116	17		80	12		55	8		30	4,2		25	3,3		19	2,4		13	1,5
1 000	5			116	11		80	7,5		55	5,1		30	2,8		25	2,2		19	1,6		13	1
750	3,8			116	8,4		80	5,7		55	4		30	2,1		25	1,7		19	1,2		13	0,8

Durée de vie > 500 heures

statique uniquement (dynamique non autorisée)

Durée de vie variant entre 100 et 500 heuers

3.4 Caractéristiques techniques

3.4.5 Rendements η des vérins à vis

Formule : $\eta_{HE} = \eta_G^* \eta_{Sp}$

3.4.5.1 Série SHE

Rendement total η_{HE} SHE et axe fileté tige trapézoïdale lubrifiés à la graisse

Dimension	0,5	1.1 ¹⁾	2	3.1 ¹⁾	5.1 ¹⁾	15.1	20.1 ¹⁾	25	35	50.1 ¹⁾	75	100.1 ¹⁾	150	200.1 ¹⁾
η_{HE}	0,31	0,30	0,31	0,27	0,24	0,27	0,24	0,22	0,21	0,15	0,18	0,15	0,16	0,175
Dimension	0,5 L	1.1 L ¹⁾	2 L	3.1 L ¹⁾	5.1 L ¹⁾	15.1 L	20.1 L ¹⁾	25 L	35 L	50.1 L ¹⁾	75 L	100.1 L ¹⁾	150 L	200.1 L
η _{HE}	0,24	0,23	0,18	0,19	0,16	0,17	0,17	0,15	0,14	0,10	0,12	0,09	-	-

Rendement η_{G} SHE lubrifiés à la graisse (sans l'axe fileté)

Dimension	0,5	1.1 ¹⁾	2	3.1 ¹⁾	5.1 ¹⁾	15.1	20.1 ¹⁾	25	35	50.1 ¹⁾	75	100.1 ¹⁾	150	200.1 ¹⁾
$\eta_{\scriptscriptstyle G}$	0,58	0,72	0,68	0,68	0,66	0,66	0,67	0,61	0,62	0,50	0,55	0,53	0,56	0,60
Dimension	0,5 L	1.1 L ¹⁾	2 L	3.1 L ¹⁾	5.1 L ¹⁾	15.1 L	20.1 L ¹⁾	25 L	35 L	50.1 L ¹⁾	75 L	100.1 L ¹⁾	150 L	200.1 L
$\eta_{\scriptscriptstyle G}$	0,45	0,55	0,41	0,47	0,43	0,42	0,47	0,41	0,42	0,34	0,35	0,32	-	-

¹⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles aves les dimesions précédentes. Les dimesions précédentes sont disponible sur demande.

3.4.5.2 Série MERKUR

Rendement total η_{HE} MERKUR et axe fileté tige trapézoïdale lubrifiés à la graisse

Dimension	M0	M1	M2	M3	M4	M5	M6	M7	M8
η _{HE}	0,34	0,30	0,28	0,27	0,25	0,19	0,19	0,15	0,15
Dimension	M0 L	M1 L	M2 L	M3 L	M4 L	M5 L	M6 L	M7 L	M8 L
η_{HE}	0,24	0,23	0,21	0,19	0,18	0,14	0,14	0,11	0,11

Rendement η_G MERKUR lubrifiés à la graisse (sans l'axe fileté)

Dimension	MO	M1	M2	M3	M4	M5	M6	M7	M8
$\eta_{\scriptscriptstyle G}$	0,68	0,71	0,70	0,69	0,69	0,57	0,64	0,61	0,57
Dimension	M0 L	M1 L	M2 L	M3 L	M4 L	M5 L	M6 L	M7 L	M8 L
$\eta_{\scriptscriptstyle G}$	0,47	0,54	0,51	0,48	0,49	0,42	0,47	0,45	0,42

www.pfaff-silberblau.com 51

3.4 Caractéristiques techniques

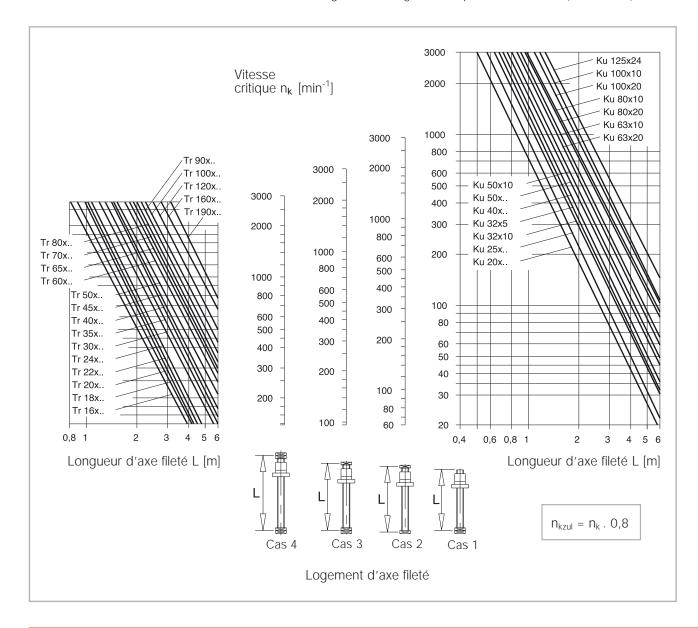
3.4.5.3 Série HSE

Rendement total η_{HE} HSE et axe fileté tige trapézoïdale

HSE n ₁ [min ⁻¹]	32	36.1	50.1	63.1	80.1	100.1	125.1	140	200.1
3 000	0,449	0,365	0,345	0,319	0,353	0,324	0,309		0,264
2500	0,446	0,362	0,343	0,317	0,352	0,323	0,308		0,264
2 000	0,443	0,359	0,340	0,315	0,350	0,321	0,307		0,263
1 500	0,437	0,355	0,336	0,311	0,346	0,319	0,305		0,262
1 000	0,428	0,347	0,329	0,304	0,339	0,314	0,301	sur	0,260
750	0,422	0,342	0,323	0,299	0,333	0,309	0,296	demande	0,258
600	0,417	0,337	0,319	0,294	0,328	0,305	0,292		0,256
500	0,413	0,334	0,315	0,290	0,323	0,301	0,288		0,253
300	0,403	0,325	0,305	0,278	0,309	0,288	0,275		0,243
100	0,389	0,313	0,289	0,258	0,282	0,261	0,244		0,215
50	0,383	0,309	0,283	0,251	0,272	0,249	0,230		0,199
HSE n ₁ [min ⁻¹]	32 L	36.1 L	50.1 L	63.1 L	80.1 L	100.1 L	125.1 L	140 L	200.1 L
3 000	0,341	0,280	0,272	0,247	0,277	0,261	0,265		0,233
2500	0,334	0,275	0,267	0,243	0,274	0,259	0,263		0,233
2 000	0,327	0,269	0,262	0,239	0,270	0,256	0,261		0,232
1 500	0,317	0,260	0,254	0,232	0,262	0,250	0,257		0,230
1 000	0,302	0,246	0,240	0,219	0,248	0,240	0,249	sur	0,225
750	0,290	0,237	0,229	0,208	0,237	0,230	0,240	demande	0,221
600	0,282	0,230	0,221	0,200	0,227	0,221	0,233		0,216
500	0,275	0,224	0,215	0,193	0,219	0,214	0,225		0,211
300	0,261	0,212	0,200	0,176	0,197	0,191	0,204		0,193
100	0,241	0,195	0,178	0,151	0,162	0,153	0,162		0,149
50	0,236	0,190	0,172	0,143	0,151	0,140	0,146		0,130

Rendements η_G HSE (sans l'axe fileté)

HSE n ₁ [min ⁻¹]	32	36.1	50.1	63.1	80.1	100.1	125.1	140	200.1
3 000	0,833	0,842	0,864	0,874	0,884	0,900	0,901		0,922
2500	0,827	0,835	0,858	0,868	0,880	0,896	0,898		0,920
2 000	0,821	0,828	0,852	0,863	0,877	0,892	0,895		0,918
1 500	0,810	0,819	0,842	0,852	0,867	0,886	0,889		0,915
1 000	0,793	0,801	0,824	0,833	0,849	0,872	0,878	sur	0,908
750	0,782	0,789	0,809	0,819	0,834	0,859	0,863	demande	0,901
600	0,772	0,778	0,799	0,805	0,821	0,847	0,851		0,894
500	0,765	0,771	0,789	0,794	0,809	0,836	0,840		0,883
300	0,747	0,750	0,764	0,762	0,774	0,800	0,802		0,849
100	0,721	0,722	0,724	0,707	0,706	0,725	0,711		0,751
50	0,711	0,713	0,709	0,688	0,681	0,692	0,671		0,695
HSE n ₁ [min ⁻¹]	32 L	36.1 L	50.1 L	63.1 L	80.1 L	100.1 L	125.1 L	140 L	200.1 L
3 000	0,632	0,646	0,681	0,677	0,694	0,725	0,773		0,814
2500	0,619	0,633	0,669	0,666	0,686	0,718	0,767		0,812
2 000	0,606	0,621	0,656	0,655	0,676	0,711	0,761		0,810
1 500	0,587	0,600	0,636	0,636	0,656	0,695	0,749		0,803
1 000	0,559	0,568	0,601	0,600	0,621	0,667	0,726	sur	0,786
750	0,538	0,547	0,574	0,570	0,594	0,639	0,700	demande	0,772
600	0,522	0,531	0,553	0,548	0,569	0,614	0,679		0,754
500	0,510	0,517	0,538	0,529	0,548	0,595	0,656		0,737
300	0,484	0,489	0,501	0,482	0,493	0,531	0,595		0,674
100	0,447	0,450	0,446	0,414	0,406	0,425	0,472		0,520


3.4 Caractéristiques techniques

3.4.5.4 Rendements de tige filetée η_{Sp} (acier / roue ou écrou bronze, lubrifié)

Vérin Tr	14x4	18x6	18x4	20x4	22x5	24x5	26x6,28	30x6	35x8	40x7
Rendement tige filetée [%]	49	54	42,5	40	43	41	45	40	43	36,5
Vérin Tr	40x8	50x9	58x12	60x9	60x12	65x12	70x10	70x12	80x10	90x16
Rendement tige filetée [%]	40	37	40,5	32,5	39,5	37,5	31,6	35,5	29	36,5
Vérin Tr	100x10	100x16	120x14	120x16	140x20	160x20	190x24	220x28		
Rendement tige filetée [%]	24	34	28	30	31,6	28,5	28,8	29		

3.4.6 Nombre de tours critique

Le nombre de tours critique (seulement pour le type 2) dépend du diamètre, de la longueur et du logement du palier de l'axe fileté (voir cas 1-4).

www.pfaff-silberblau.com 53

3.4 Caractéristiques techniques

3.4.7 Vérin à vis à billes Ku

Dimensions standard et caractéristiques pour les vérins de type 1. Autres pas et charges, sur demande. les vérins de type 2, il est possible d'utiliser des axes filetés renforcés, avec des pas différents et des charges plus élevées.

Série SHE

Taille	vis à billes Ku	C _{dyn} [kN]	C _{stat} [kN]
3.1	25 x 05	24,1	49,9
3.1	25 x 10	14,8	27,2
5.1	32 x 05	27,0	75,1
5.1	32 x 10	16,6	42,4
15.1	50 x 10	111,5	326,8
15.1	50 x 24	44,2	72,9
20.1	50 x 10	111,5	326,8
20.1	50 x 24	44,2	72,9
25	80 x 10	134,6	575,4
25	63 x 20	92,1	288,8
35	100 x 10	145,9	735,5
35	80 x 20	145,9	735,5
50.1	125 x 10	157,6	931,5
50.1	100 x 20	sur demande	sur demande
75	sur demande	sur demande	sur demande
100.1	160 x 20	172,9	1216
100.1	125 x 24	328,1	1601

Série MERKUR

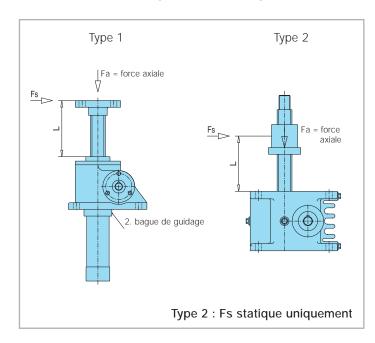
Taille	vis à billes Ku	C _{dyn} [kN]	C _{stat} [kN]
M0	-	-	-
	16 x 05	9,3	12,7
M1	16 x 10	10,9	8,3
	16 x 20	10,2	14,2
M2	20 x 05	10,5	17,0
	25 x 05	12,1	22,4
M3	25 x 10	17,4	42,9
	25 x 25	16,7	32,6
	40 x 05	23,8	63,5
M4	40 x 10	35,9	70,0
	40 x 20	39,6	87,5
M5	50 x 10	65,1	153,0
M6			
M7		sur demande	
M8			

h_{Sp} ' 0,9

Série HSE

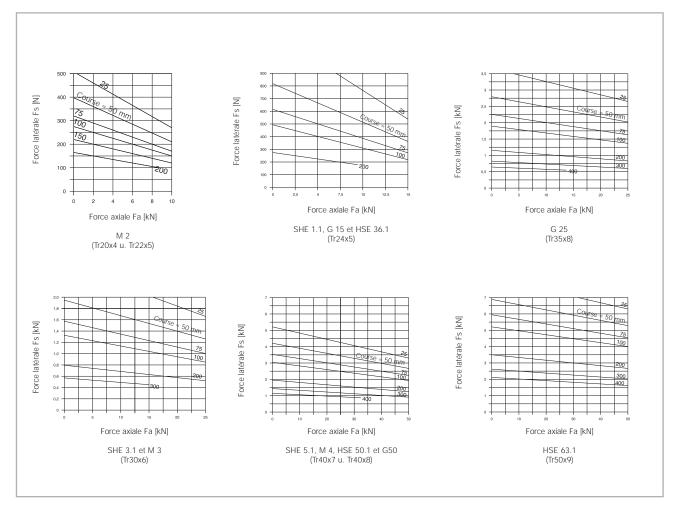
Taille	vis à billes Ku	C _{dyn} [kN]	C _{stat} [kN]
36.1	20 x 05	19,3	23,1
30.1	20 x 10	11,19	14,5
50.1	32 x 05	27,0	75,1
50.1	32 x 10	27,0	75,1
63.1	40 x 10	78,7	170,5
03.1	40 x 24	48,4	85,2
80.1	63 x 10	136	511
80.1	50 x 24	158	247,3
100.1	80 x 10	134,6	575,4
100.1	63 x 20	92,1	288,8
125.1	100 x 20	304,4	1041
123.1	80 x 20	280,5	798,3
140	sur demande	sur demande	sur demande
200.1	160 x 20	172,9	1216
200.1	125 x 24	328,1	1601

Série SHG


Taille	vis à billes Ku	C _{dyn} [kN]	C _{stat} [kN]
G15	20 x 20	13,2	19,1
013	25 x 05	12,1	19,0
G25	25 x 05	9,5	19,0
GZS	25 x 10	16,5	42,9
	32 x 10	30,6	56,0
G50	32 x 20	27,1	65,0
G30	32 x 40	15,2	33,5
	40 x 05	23,8	63,5
G90	63 x 10	73,8	200,0

Vous trouverez d'autres vis à billes dans notre catalogue général. N'hésitez pas à le demander!

3.4 Caractéristiques techniques



3.4.8 Force latérale admissible appliquée sur le vérin

La force latérale admissible Fs appliquée sur l'axe fileté dépend de la force axiale Fa, du diamètre de l'axe fileté d et de la longueur de l'axe fileté L. Pour déterminer la force admissible Fs, les calculs sont basés sur l'effort de compression ou de flambage, qui exerce un effet défavorable. La longueur maximale L a été limitée à la valeur "longueur de l'axe fileté non guidé = 4x longueur de fixation" qui est courante dans le domaine des constructions mécaniques générales.

La force latérale appliquée sur l'axe fileté n'est admissible que sur les vérins avec 2 bagues de guidage.

Les forces latérales appliquées sur les axes filetés ou sur les écrous mobiles provoquent une trop forte compression des arêtes dans le filet en mouvement; il en résulte une usure prématurée et une durée de vie réduite.

www.pfaff-silberblau.com 55

3.4 Caractéristiques techniques

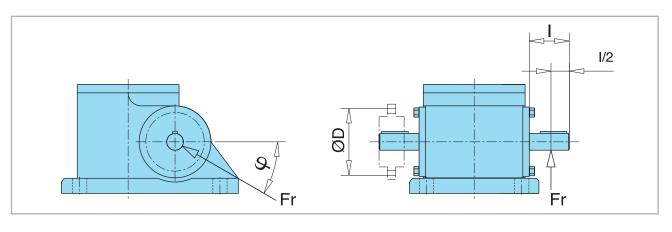
3.4 Caractéristiques techniques

3.4.9 Force radiale admissible sur l'arbre de commande

Avec des engrenages ou roues à chaînes et des poulies à courroies, des forces radiales agissent sur l'arbre moteur des vérins à vis sans fin. La valeur maximale admissible dépend de la force de levage et de la dimension du vérin.

Le tableau est calculé pour $\phi\sim 30^\circ$ ou $330^\circ.$ C'est la direction la plus défavorable pour l'attaque de la charge de levage et du sens de rotation.

Force radiale Fr admissible lors de l'application de la force à I/2

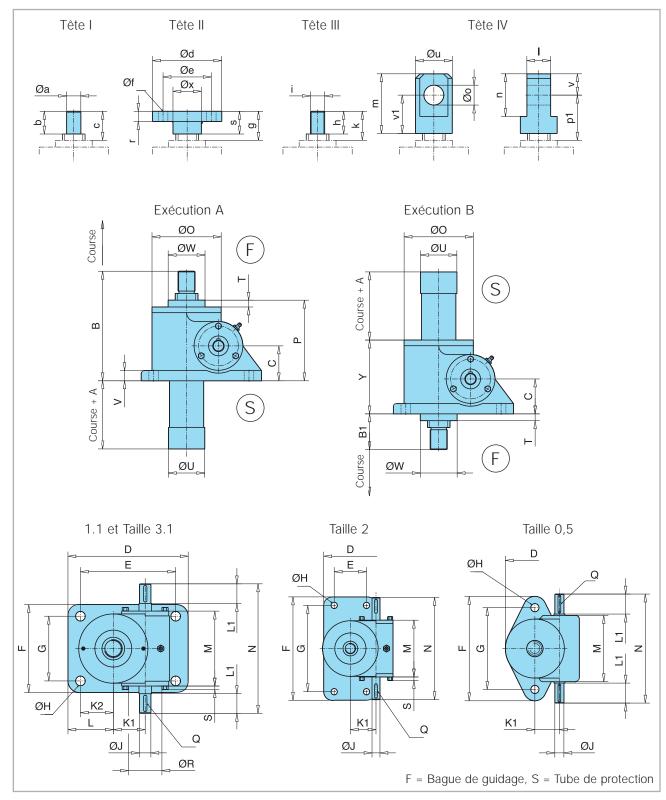

Diamètre minimum D pour la roue dentée ou la poulie à courroie :

Dmin = 19100
$$\frac{P}{Fr \max x n} = \frac{2 T_A}{Fr \max}$$
 (m)

P (kW) = Puissance d'entraînement Fr max (N) = force radiale maxi (selon tableau) n (min⁻¹) = nombre de tours de l'arbre moteur

 T_A (Nm) = couple d'entraı̂nement

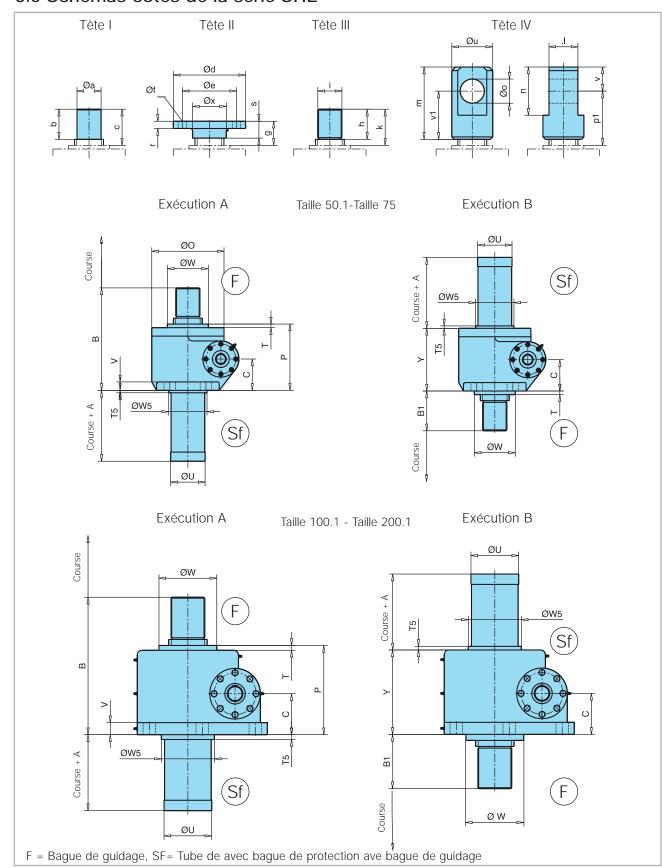
Serie SHE (N) (Nm) 0,5 / 0,5 L 250 1,9 1.1 / 1.1 L 350 5,7 2 / 2 L 300 13 3.1 / 3.1 L 350 18 5.1 / 5.1 L 750 44,2 15.1 / 15.1 L 1 000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 10.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 63		Fr max	pour T _A max
0,5 / 0,5 L 250 1,9 1.1 / 1.1 L 350 5,7 2 / 2 L 300 13 3.1 / 3.1 L 350 18 5.1 / 5.1 L 750 44,2 15.1 / 15.1 L 1 000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1		(N)	(Nm)
1.1 / 1.1 L 350 5,7 2 / 2 L 300 13 3.1 / 3.1 L 350 18 5.1 / 5.1 L 750 44,2 15.1 / 15.1 L 1000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	Série SHE		
2 / 2 L 300 13 3.1 / 3.1 L 350 18 5.1 / 5.1 L 750 44,2 15.1 / 15.1 L 1 000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300	0,5 / 0,5 L	250	1,9
3.1 / 3.1 L 350 18 5.1 / 5.1 L 750 44,2 15.1 / 15.1 L 1 000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 100 3,4 M 2 200 7,1 34 M 3 300 18 M 4 500 38 M 5 800 93	1.1 / 1.1 L	350	5,7
5.1 / 5.1 L 750 44,2 15.1 / 15.1 L 1 000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93<	2 / 2 L	300	13
15.1 / 15.1 L 1000 108 20.1 / 20.1 L 1300 182 25 / 25 L 2000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	3.1 / 3.1 L	350	18
20.1 / 20.1 L 1300 182 25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	5.1 / 5.1 L	750	44,2
25 / 25 L 2 000 314 35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	15.1 / 15.1 L	1 000	108
35 / 35 L 2300 398 50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 800	20.1 / 20.1 L	1300	182
50.1 / 50.1 L 2400 796 100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 40 G 50 1200	25 / 25 L	2 000	314
100.1 / 100.1 L 5100 1415 150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	35 / 35 L	2300	398
150 6300 2011 Série HSE 32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	50.1 / 50.1 L	2400	796
Série HSE 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	100.1 / 100.1 L	5100	1415
32 / 32 L 200 2,7 36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	150	6300	2011
36.1 / 36.1 L 350 5,3 50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	Série HSE		
50.1 / 50.1 L 400 14,5 63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	32 / 32 L	200	2,7
63.1 / 63.1 L 900 32,4 80.1 / 80.1 L 1500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	36.1 / 36.1 L	350	5,3
80.1 / 80.1 L 1 500 89,7 100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	50.1 / 50.1 L	400	14,5
100.1 / 100.1 L 2 000 196 125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	63.1 / 63.1 L	900	32,4
125.1 / 125.1 L 2400 372 140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	80.1 / 80.1 L	1 500	89,7
140 / 140 L sur demande sur demande 200.1 / 200.1 L 6300 1223 Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	100.1 / 100.1 L	2 000	196
200.1 / 200.1 L Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	125.1 / 125.1 L	2400	372
Série MERKUR M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	140 / 140 L	sur demande	sur demande
M 0 70 1,5 M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	200.1 / 200.1 L	6300	1223
M 1 100 3,4 M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	Série MERKUR		
M 2 200 7,1 M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 0	70	1,5
M 3 300 18 M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 1	100	3,4
M 4 500 38 M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 2	200	7,1
M 5 800 93 M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 3	300	18
M 6 1300 240 M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 4	500	38
M 7 2100 340 M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 5	800	93
M 8 3100 570 Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 6	1300	240
Série SHG G 15 300 15 G 25 800 40 G 50 1200 97	M 7	2100	340
G 15 300 15 G 25 800 40 G 50 1200 97	M 8	3100	570
G 25 800 40 G 50 1200 97	Série SHG		
G 50 1200 97	G 15	300	15
	G 25	800	40
G 90 1800 199	G 50	1200	97
	G 90	1800	199

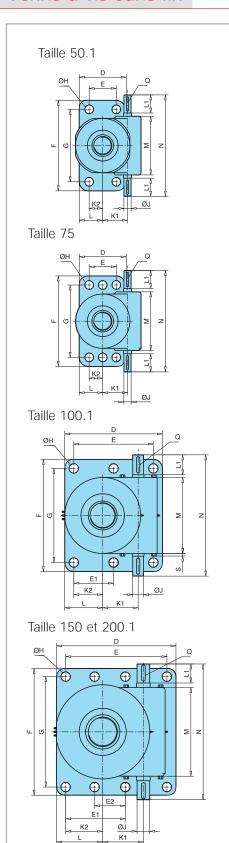


3.5 Schémas cotés de la série SHE

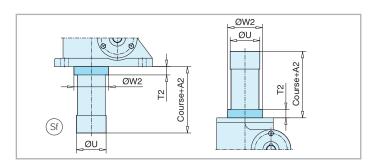
3.5.1 Type 1

3.5.1.1 Standard




0,5 Tr 18x6	Tr O AvE					20.1 ¹⁾		35
	Tr 24x5	Tr 26x6,28	Tr 30x6	Tr 40x7	Tr 60x12	Tr 70x12	Tr 90x16	Tr 100x16
20	20	20	20	20	20	20	20	20
105,5	124	147,5	150,5	193	230	256	317	350
35,5	54	54,5	53,5	63	80	80	100	110
32	35	44	45	61,5	70	87	102	115
81,5	150	94	165	212	235	295	350	430
-	130	57	135	168	190	240	280	360
115	100	182	120	155	200	215	260	280
90	80	152	90	114	155	160	190	210
9	9	11	14	17	21	28	35	35
10	14	14	16	20	25	28	34	38
27	36	45,2	45,2	56,2	66,8	72,5	97	120
-	58	28,5	50	58		95	95	135
32,5	68	47	65	80				170
	18	-	-	-				80
73	100	100	110,5	132				265
120	140	180		228				430
								260
								250
					8x7x40			10x8x70
-	-							100
	_							10
	9							10
								30
								150
								139
								240
18h9	15	18	20	25	40	50	70	80
								80
								100
65	72	98	98	122	150	185	205	260
45			75					200
								4xø33
								30
								80
								130
30	45	46	45	51	74	74	92	100
-								
15	24	30	30	39	50	54	63	80
M 18x1,5	M 16x1,5	M 18x1,5	M 22x1,5	M 30x2	M 40x3	M 56x3	M 70x3	M 80x3
30	45						92	100
20	25	30	30	42	60	75	90	105
50	60	70	70	105	130	150	175	220
30	40	50	50	75	100	120	140	160
								80
50	60	61	60	79	104	110	134	160
30	40	48	50	65	90	110	130	150
35	40	45	45	67,5	80	90	105	140
		25	25	37,5	50	60	70	80
	35,5 32 81,5 - 1115 90 9 10 27 - 32,5 22 73 120 65 75,5 3x3x20 5,5 10 36 29 70 18h9 20 30 65 45 4xø7 8 20 18 30 15 M 18x1,5 30 20 50 30 15 50 30	35,5 54 32 35 81,5 150 - 130 115 100 90 80 9 9 10 14 27 36 - 58 32,5 68 22 18 73 100 120 140 65 88 75,5 79 3x3x20 5x5x16 5,5 9 10 13 36 52² 29 40 70 79 18h9 15 20 24 30 45 15 24 M 18x1,5 M 16x1,5 30 45 20 25 50 60 30 40 15 20 50 60 30 40 15 20 50 60 30 40	35,5 54 54,5 32 35 44 81,5 150 94 - 130 57 115 100 182 90 80 152 9 9 11 10 14 14 27 36 45,2 - 58 28,5 32,5 68 47 22 18 - 73 100 100 120 140 180 65 88 98 75,5 79 101,5 3x3x20 5x5x16 5x5x25 - - 41 - - 6 5,5 9 8,5 10 13 14 36 52 ² 48 29 40 49 70 79 93 18h9 15 18 20 24 30 30 45 46 45 50 75 4xø7 4xø9 4xø11 8 10 12 20 25 30 18 30 40	35,5 54 54,5 53,5 32 35 44 45 81,5 150 94 165 - 130 57 135 115 100 182 120 90 80 152 90 9 9 11 14 10 14 14 16 27 36 45,2 45,2 - 58 28,5 50 32,5 68 47 65 22 18 - - 73 100 100 110,5 120 140 180 190 65 88 98 98 75,5 79 101,5 105,5 3x3x20 5x5x16 5x5x25 5x5x32 - - - 6 5,5 5,5 9 8,5 8,5 10 13 14 12	35,5 54 54,5 53,5 63 32 35 44 45 61,5 81,5 150 94 165 212 - 130 57 135 168 115 100 182 120 155 90 80 152 90 114 9 9 11 14 17 10 14 14 16 20 27 36 45,2 45,2 56,2 - 58 28,5 50 58 32,5 68 28,5 50 58 32,5 68 28,5 50 58 32,5 68 28,5 50 58 32,5 68 28,5 50 58 22 18 - - - - 73 100 100 110,5 132 120 140 180	35.5 54 54.5 53.5 63 80 32 35 44 45 61.5 70 81,5 150 94 165 212 235 - 130 57 135 168 190 115 100 182 120 155 200 90 80 152 90 114 155 90 10 14 14 16 20 25 66.8 47 66 80 66.8 47 65 80 66.8 63,5 83,5 83,5 83,5 80 86 63,5 83,5 83,5 80,5 86,3 83 88 88 80,5 80,5 86,3 83,5 83,5 83,5 83,5 83,5 83,5 83,5 83,5 83,5 83,5 83,5 83,5 89,8 98 98 122 150 98 98 12 156 33,3 83	35,5 54 54,5 53,5 63 80 80 32 35 44 45 61,5 70 87 81,5 150 94 165 212 235 295 - 130 57 135 168 190 240 115 100 182 120 155 200 215 90 80 152 90 114 155 160 9 9 11 14 17 21 28 10 14 14 16 20 25 28 27 36 45,2 45,2 56,2 66,8 72,5 - 58 28,5 50 86 63,5 95 32,5 68 47 65 80 86 122,5 22 18 - - - 47 52 73 100 100 110,5	35.5

¹⁾ La dimension X.1 remplace la dimension de construction précédente.
Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande.
2) seule exécution

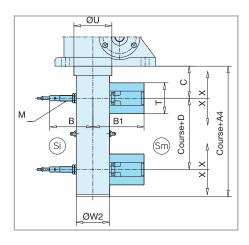

Taille	50.1 ¹⁾	75	100.1 ¹⁾	150	200.1 ¹⁾
Axe fileté	Tr 120x16	Tr140x20	Tr 160x20	Tr 190x24	Tr220x28
Α	20	80	65	80	
В	425	485	570	675	
B1	165	175	220	230	
С	130	155	170	194	
D	260	330	540	660	
Е	150	225	440	560	
E1	-	-	220	330	
E2	-	-	-	170	
F	500	540	620	700	
G	400	455	520	610	
ØН	4xØ48	6xØ45	6xØ52	8xØ52	
ØJ	40k6	60 m6	60 m6	70 m6	
K 1	137	160	196	225	
K 2	75	112,5	160	210	
L	130	165	210	255	
L 1	100	110	110	110	
M	324	360	420	490	
N	560	600	670	710	
ØO	290	375	420	510	
P	275	335	355	445	
Q		18x11x100		20x12x90	
S	12x8x80		18x11x90		
	-	-	14	-	
T	15	25	15	20	
T5	10	25	20	20	
V	35	40	50	60	
ØW	170	265	182	300	sur demand
Ø W5	170	265	220	245	
ØU	143	220	198	220	
Υ	260	310	350	424	
Tête I					
Ø a k6	100	110	140	160	
b	125	125	175	200	
С	150	150	200	230	
Tête II					
Ød	300	370	370	400	
Øe	225	270	280	310	
Øf	4xØ35	6xØ45	6xØ52	8xØ52	
r	30	75	75	90	
S	70	125	125	150	
Øx	140	200	200	220	
g	100	150	150	180	
Tête III					
h	125	125	175	200	
i	M 100x5	M 120x6	M 140x6	M 160x6	
k	150	150	200	230	
Tête IV					
I	120-0,2	140-0,2	160-0,3	180-0,3	
m	300	360	360	400	
n	200	240	280	320	
Ø o H8	100	120	140	160	
p1	225	265	245	270	
Øи	170	200	220	260	
. u					
v1	200	240	220	240	

¹⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande.

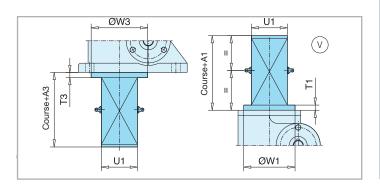
3.5 Schémas cotés de la série SHE

3.5.1.2 Deuxième bague de guidage Sf

Si des guidages ne sont pas réalisables côté construction, et lorsque l'on ne peut exclure des forces latérales provoquées par des mouvements de basculement, ou des forces axiales, il convient de prévoir une deuxième bague de guidage sur les vérins SHE.


Taille	A2	T2	ØW2	ØU
0,5	32	11,5	36	29
1.1	32	9	52 ¹⁾	40
2	44	20	60	49
3.1	40	20	60	49
5.1	43	18	75	64
15.1	42	18	95	81
20.1	55	31	100	88
25	65	40	130	120
35	60	40	150	139
50.1				143
75	St	tandard toujou	rs	220
100.1	avec	: 2° bague gui	dage	198
150				220
200.1				

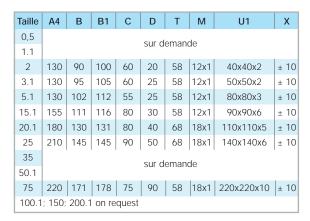
¹⁾ seul execution A

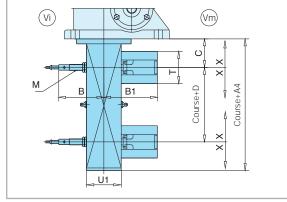

Toutes les tailles sont livrables avec des fins de course mécaniques ou inductifs.

Taille	A4	В	B1	С	D	Т	М	ØU	ØW2	Х	
1.1		sur demande									
2	160	92	100	60	20	58	12x1	60	44,5	±10	
3.1	170	100	106	65	25	58	12x1	75	60,3	±10	
5.1	175	107	115	70	25	58	12x1	95	76,1	±10	
15.1	185	114	122	75	30	58	12x1	110	88,9	±10	
20.1	195	131	130	80	40	58	12x1	125	114,3	±10	
25	225	141	137	90	50	65	18x1	150	133	±10	
35					SII	r deman	de				
50.1					30	i deman	ac				
75	204	171	178	75	70	58	18x1	265	219,1	±10	
100.1;	150; 20	0.1; sur	demande	е							

3.5.1.4 Immobilisation en rotation V

Pour obtenir un mouvement linéaire de l'axe fileté, le vérin doit être immobilisé en rotation. Ceci peut être réalisé côté construction ou avec une immobilisation en rotation montée sur le modèle SHE, avec tube carré.




Taille	А3	T3	ØW3	A1	T1	ØW1	U1
0,5	65	9	52	60	-	-	30x30
1.1	74	8	80	74	8	80	40x40
2	85	8	65	77	-	-	40x40
3.1	85	8	70	77	-	-	50x50
5.1	95	10	110	85	-	-	80x80
15.1	115	15	130	100	-	-	90x90
20.1	100	20	160	100	20	160	100x100
25	110	20	180	110	20	160	120x120
35	115	20	200	115	20	200	140x140
50.1	158	15	240	158	15	240	180x180
75	170	20	300	170	20	300	220x220
100.1	170	10	300	170	15	300	200x200
150	210	20	380	210	20	380	260x260
200.1			SU	r deman	de		

3.5 Schémas cotés de la série SHE

3.5.1.5 Immobilisation en rotation avec des interrupteurs fin de course rapportés Vm / Vi

Fin de course inductif Vi

Fin de course mécanique Vm

Pour les caractéristiques techniques et les schémas cotés, se référer au chapitre des accessoires

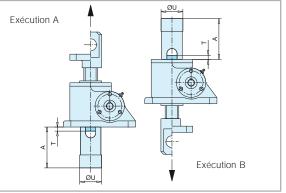
Toutes les tailles sont livrables avec des fins de course mécaniques **ou** inductifs.

3.5.1.6 Avec écrou de sécurité court

Cet assemblage absorbe la charge axiale en cas de rupture de l'écrou principal. Ceci augmente considérablement la sécurité de fonctionnement des composants d'entraînement. De plus, l'écrou de sécurité permet un contrôle exact de l'usure de l'écrou principal, étant donné que la distance entre les deux écrous se modifie progressivement au cours du processus d'usure. Pour les vérins à vis dotés d'un écrou de sécurité court, il convient de toujours tenir compte de la direction principale de la charge appliquée (traction ou compression) ainsi que de la position de montage, car seul un écrou monté conformément aux instructions peut absorber la charge.

SHE Type 1, compression

т-:!!-	В	С	T 1)	GVV.
Taille	В	C	I ′	ØW
1.1		sur dei	mande	
2	147,5	162,5	2	45
3.1	150,5	165,5	2	45
5.1	193	220,5	2	55
15.1	230	260	3	76
20.1	262	292	3	86
25	317	359	3,5	112
35	355	415	15	138
50.1:75	· 100 1· 150 a	nd 200 1 sur o	demande	


Exécution A

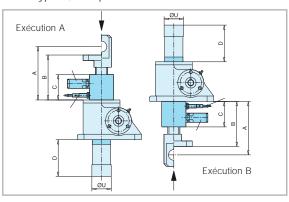
O

Exécution B

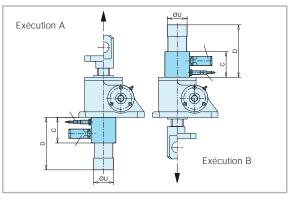
SHE Type 1, traction

Taille	А	T 1)	ØU
1.1		sur demande	
2	lift + 20	2	61
3.1	lift + 20	2	61
5.1	lift + 40	2	81
15.1	lift + 20	3	93
20.1	lift + 20	3	119
25	lift + 20	3,5	145
35	lift + 45	4	173
50.1; 75	; 100.1; 150 and 2	00.1 sur demande	

¹⁾ correspond à l'état neuf. Si "T = 0", l'écrou de levage et l'écrou de sécurité doivent être remis en état.


3.5 Schémas cotés de la série SHE

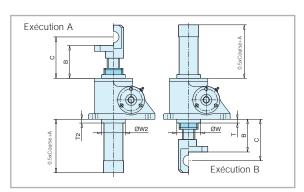
3.5.1.7 Avec écrou de sécurité long (BGV C1 ou VBG 14)


Pour l'utilisation de vérins à vis sans fin sur des scènes de théâtre (réglementations BGV C1), des plate-formes (réglementations VBG14) ou dans des installations présentant un risque pour les personnes, les composants de levage sont conçus en conformité avec les prescriptions les plus récentes; entre autres, le dispositif de sécurité empêchant une chute (tiges autobloquantes et/ou freins mécaniques de sécurité dans le dispositif d'entraînement) et le dispositif de synchronisation peuvent être complétés par des options supplémentaires en cas de besoin.

SHE Type 1, compression

Taille	Α	В	С	D	ØU			
1.1			sur dema	ndo				
2		sui demande						
3.1	140	125	80	Lift + 60	65			
5.1	161,5	134	83	Lift + 70	65			
15.1	201,5	171,5	87,5	Lift + 70	83			
20.1	201	171	91	Lift + 70	115			
25	264	222	130	Lift + 83	160			
35; 50.1;	75; 100.1	; 150 and	200.1 sur	demande				

SHE Type 1, traction

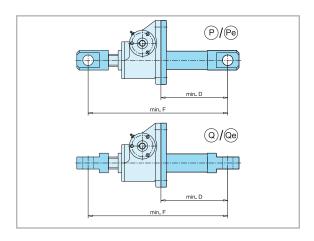

BG	Α	В	С	D	ØU
	Sch	émas coté	s sur dema	ande	

	Fin de course inductif	Fin de course mécanique
l	Pour les caractéristiques techniques et les sol	hémas cotés, se référer au chapitre des accessoires

3.5.1.8 Exécution télescopique

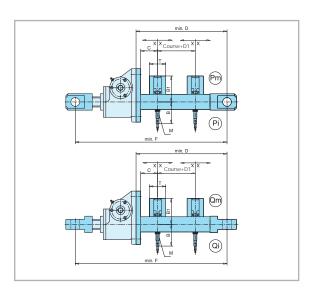
Les vérins à vis en exécution télescopique permettent une course plus grande avec des dimensions de montage réduites.

Taille	Axe fileté	Α	В	С	ØW	Т	ØW2	T1
3.1/0,5			sur (deman	de			
5.1/1.1	Tr20x5LH	15	63	85			110	10
5.1/1.1	Tr40x5RH	15	03	00	-	-	110	10
15.1/2	Tr26x6LH	35	72	87	135	26	85	17,5
13.172	Tr60x6RH	33	, 2	0,	100	20	00	17,5
15.1/3.1	Tr30x6LH	35	72	87	135	26	85	17,5
13.1/3.1	Tr60x6RH	35	12	07		20	05	17,0
20/5.1	Tr40x7LH	33	90	117,5	120	32	116	12
20/3.1	Tr72x7RH	55	70	117,5	120	32	110	12
25/10	Tr55x8LH	33	90	120	130	41	_	_
23/10	Tr90x8RH	33	70	120	150	71		
50.1/10	Tr60x12LH	35	160	130	200	15	200	15
30.1/10	Tr110x12RH	33	100	130	200	15	200	13


3.5 Schémas cotés de la série SHE

3.5.1.9 Exécution articulée

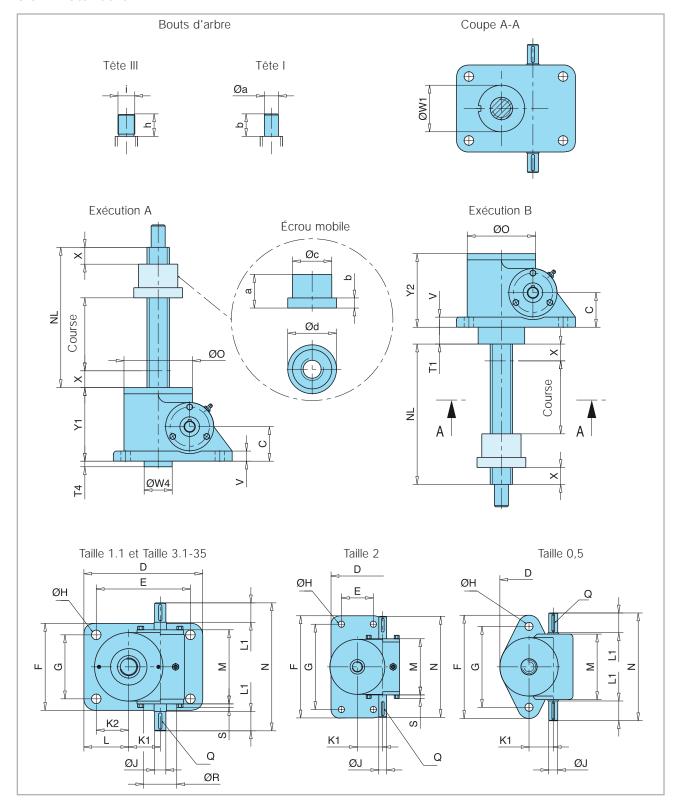
Pour que les vérins à vis puissent effectuer des pivotements ou des basculements, les composants d'entraînement doivent être fixés en deux points tout en restant mobiles. Ceci peut être réalisé par une tête IV des deux côtés, ou par une tête articulée. Il convient de limiter autant que possible les mouvements de flexion résultant du mouvement pivotant, en prévoy


	avec butée de fin	de course Pe/Qe	sans butée de fi	n de course P/Q		
Taille	D	F	D	F		
1.1		sur de	mande			
2	Course + 90	Course + 252,5	Course + 70	Course + 232,5		
3.1	Course + 110	Course + 275,5	Course + 90	Course + 255,5		
5.1	Course + 128	Course + 349	Course + 108	Course + 329		
15.1	Course + 155	Course + 415	Course + 125	Course + 385		
20.1	Course + 175	Course + 467	Course + 135	Course+ 427		
25	Course + 200	Course + 559	Course + 150	Course + 509		
35; 50	.1; 75; 100.1 st	ur demande				

3.5.1.10 Exécution articulée avec des interrupteurs fin de course rapportés

Toutes les dimensions sont livrables avec des fins de course mécaniques ou inductifs.

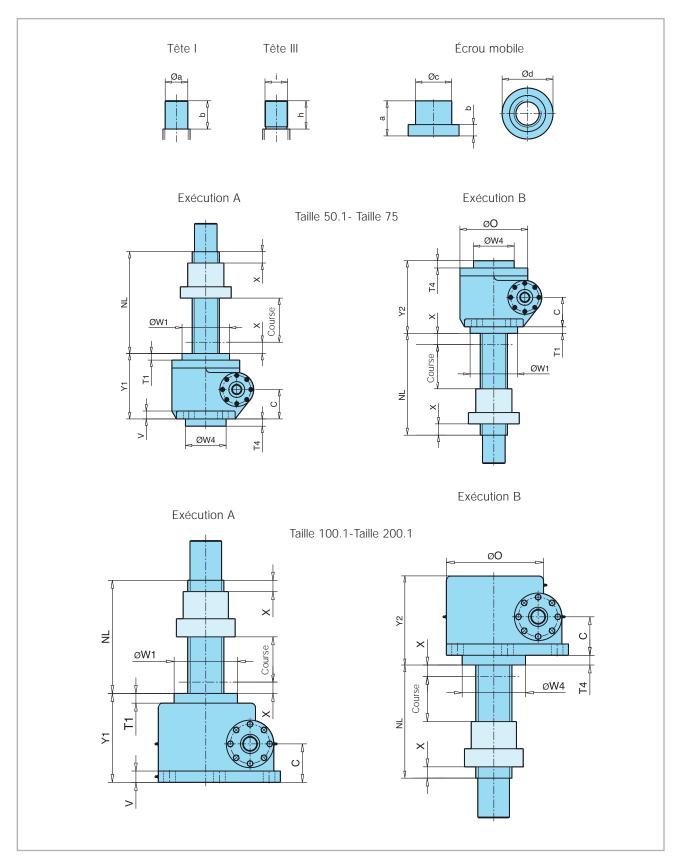
Taille	В	B1	С	D	D1	F	M	Т	Х		
3.1	91	100	48	175	25	340,5	12x1	58	± 10		
5.1	103	80	48	203	20	424,5	12x1	58	± 10		
15.1	106	115	48	228	30	488	12x1	58	± 10		
0,5; 1	.1; 2; 2	0,5; 1.1; 2; 20.1; 25; 35; 50.1; 75 and 100.1 sur demande									

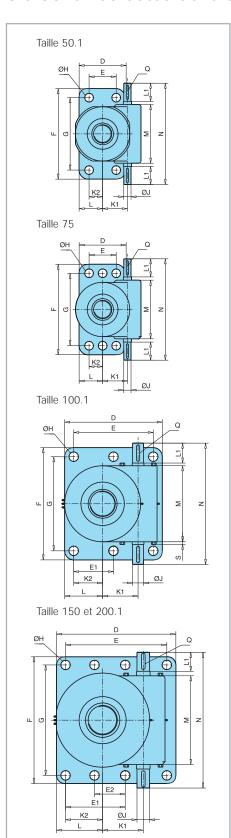


3.5 Schémas cotés de la série SHE

3.5.2 Type 2

3.5.2.1 Standard

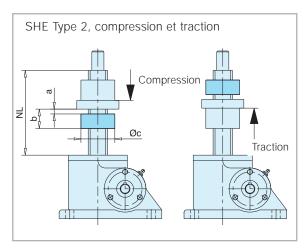



Taille	0,5	1.1 ¹⁾	2	3.1 ¹⁾	5.1 ¹⁾	15.1 ¹⁾	20.1 ¹⁾	25	35
Axe fileté	Tr 18x6	Tr 24x5	Tr 26x6,28	Tr 30x6	Tr 40x7	Tr 60x12	Tr 70x12	Tr 90x16	Tr 100x16
С	32	35	44	45	61,5	70	87	102	115
D	81,5	150	94	165	212	235	295	350	430
E	-	130	57	135	168	190	240	280	360
F	115	100	182	120	155	200	215	260	280
G	90	80	152	90	114	155	160	190	210
øΗ	9	9	11	14	17	21	28	35	35
øJk6	10	14	14	16	20	25	28	34	38
K 1	27	36	45,2	45,2	56,2	66,8	72,5	97	120
K 2	-	58	28,5	50	58	63,5	95	95	135
L	32,5	68	47	65	80	86	122,5	130	170
L 1	22	18	-	-	-	47	52	60	80
М	73	100	100	110,5	132	185	213,5	221	265
N	120	140	180	190	228	280	322	355	430
NL	Course + 72	Course + 80	Course + 80	Course + 85	Course+ 100	Course + 125	Course+ 150	Course + 170	Course+ 205
øΟ	65	88	98	98	122	150	185	205	260
Q	3x3x20	5x5x16	5x5x25	5x5x32	6x6x32	8x7x40	8x7x45	10x8x50	10x8x70
ø R	-	-	41	38	55	-	72	80	100
S	-	-	6	5,5	6	-	6	10	10
T 1	18,5	16	24	26,5	30	34	39	52	45
T 4	-	-	-	-	-	-	-	-	15
V	10	13	14	12	18	16	20	25	30
ø W 1	45	52	60	68	83	110	140	160	180
ø W 4	-	-	-	-	-	-	-	-	150
Sécurité X	20	20	20	20	20	25	25	25	30
Y 1	74	86	95	100	131	160	194	226	250
Y 2	70	79	93	97	130	150	176	217	255
Écrou mobile									
а	32	40	40	45	60	75	100	120	145
b	10	12	18	15	18	25	30	35	35
øch9	40	45	50	50	70	90	90	130	150
ø d	50	65	76	80	87	110	120	155	190
Tête I									
ø a k6	10	15	18	20	25	40	50	70	80
b	20	24	30	30	40	50	54	80	80
Tête III									
h	20	24	30	30	39	50	54	80	80
i	M 10	M 16x1,5	M 18x1,5	M 22x1,5	M 30x2	M 40x3	M 56x3	M 70x3	M 80x3

¹⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande.

Taille	50.1 ¹⁾	75	100.1 ¹⁾	150	200.1 ¹⁾
Axe fileté Tr 120x16		Tr 140x20	Tr 160x20	Tr 190x24	Tr 220x28
С	130	155	170	194	
D	260	330	540	660	
E	150	225	440	560	
E1	-		220	330	
E2	-	-	-	170	
F	500	540	620	700	
G	400	455	520	610	
øΗ	48	45	52	52	
øJ	40k6	60m6	60m6	70m6	
K 1	137	160	196	225	
K 2	75	112,5	160	210	
L	130	165	210	255	
L 1	100	110	110	110	
M	324	360	420	490	
N	560	600	670	710	
NL	Course + 255	Course + 300	Course + 300	Course + 340	
ØO	-	375	420	510	
Q	12x8x80	18x11x100	18x11x90	20x12x90	sur demande
S	-	-	14	-	
T 1	29	16	33	40	
T 4	32	-	43	50	
V	35	40	50	60	
Ø W 1	210	274	280	340	
Ø W 4	180	-	-	-	
Safety X	50	50	50	50	
Y 1	289	326	383	465	
Y 2	289	326	393	475	
Écrou mobile					
а	155	200	200	240	
b	50	70	80	90	
øch9	160	180	200	240	
ø d	225	250	260	300	
Tête I					
ø a k6	100	110	140	160	
b	125	125	175	200	
Tête III					
h	125	125	175	200	
i	M 100x5	M 120x6	M 140x6	M 160x6	

¹⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande.



3.5 Schémas cotés de la série SHE

3.5.2.2 Avec écrou de sécurité court

Cet assemblage absorbe la charge axiale en cas de rupture de l'écrou principal. Ceci augmente considérablement la sécurité de fonctionnement des composants d'entraînement. De plus, l'écrou de sécurité permet un contrôle exact de l'usure de l'écrou principal, étant donné que la distance entre les deux écrous se modifie progressivement au cours du processus d'usure. Pour les vérins à vis dotés d'un écrou de sécurité court, il convient de toujours tenir compte de la direction principale de la charge appliquée (traction ou compression) ainsi que de la position de montage, car seul un écrou monté conformément aux instructions peut absorber la charge.

Taille	a ¹⁾	b	Øc	NL		
1.1	5	25	45	Course+105		
2	10	35	50	Course+115		
3.1	10	35	50	Course+120		
5.1	10	40	70	Course+140		
15.1	10	60	90	Course+185		
20.1	10	60	90	Course+210		
25	15	80	130	Course+250		
35	15	80	150	Course+285		
50.1	15	80	160	Course+335		
75	sur demande					
100.1	15	95	200	Course+395		
150	20	120	240	Course+460		
200.1	sur demande					

3.5.2.3 Avec écrou de sécurité long (BGV C1 ou VBG 14)

Pour l'utilisation de vérins à vis sans fin sur des scènes de théâtre (réglementations BGV C1), des plate-formes (réglementations VBG 14) ou dans des installations présentant un risque pour les personnes, les composants de levage sont conçus en conformité avec les prescriptions les plus récentes; entre autres, le dispositif de sécurité empêchant une chute (tiges autobloquantes et/ou freins mécaniques de sécurité dans le dispositif d'entraînement) et le dispositif de synchronisation peuvent être complétés par des composants supplémentaires en cas de besoin.

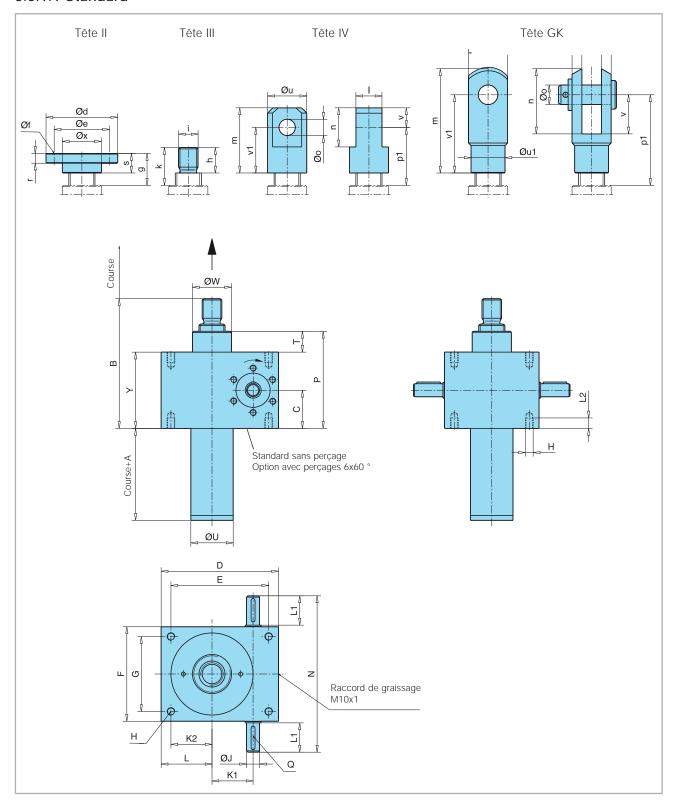
Autres versions d'écrous, voir chapitre 3.9

- · Écrou mobile à montage articulé
- Vérin avec écrou à billes avec bride
- Écrou mobile avec méplat
- · Écrou mobile avec appui sphérique

Taille	a ¹⁾	b	Øc	NL		
1.1	5	45	45	Course+125		
2	10	50	50	Course+130		
3.1	10	55	50	Course+140		
5.1	10	70	70	Course+170		
15.1	10	85	90	Course+210		
20.1	10	110	90	Course+260		
25	15	135	130	Course+305		
35	15	160	150	Course+365		
50.1	15	170	160	Course+425		
75	sur demande					
100.1	15	215	200	Course+515		
150	20	260 240		Course+600		
200.1	sur demande					

¹⁾ correspond à l'état neuf. Si "a = 0", l'écrou de levage et l'écrou de sécurité doivent être remis en état

Fin de course mécanique

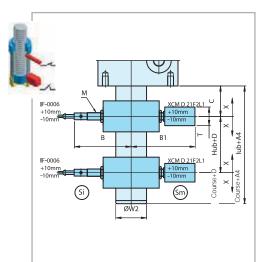

Pour les caractéristiques techniques et les dimensions, se référer au chapitre des accessoires

3.6 Schémas cotés de la série MERKUR

3.6.1 Type 1

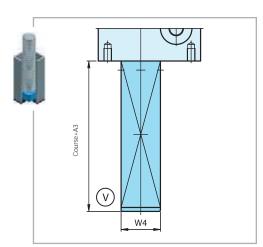
3.6.1.1 Standard

71


Taille	M 0	M 1	M 2	M 3	M 4	M 5	M 6	M 7	M 8
Axe fileté	Tr 14x4	Tr 18x4	Tr 20x4	Tr 30x6	Tr 40x7	Tr60x9	Tr80x10	Tr100x10	Tr120x14
Axe fileté**	11 1747	Ku 16x05	Ku 20x05	Ku 25x05	Ku 40x05	Ku 50x10	11000110	11100010	11120714
7 the filete	_	Ku 16x10	114 20100	Ku 25x10	Ku 40x10	ING SOX TO	_	_	_
		Ku 16x10		Ku 25x25	Ku 40x20		_	_	_
A/A*	25/55	25/55	35/65	40/75	45/100	55/90	60/110	65/155	100/145
В	77	97	120	132	182	255	275	360	466
C	25	31	37,5	41	58,5	80	82,5	110	133
D	60	80	100	130	180	200	240	290	360
E	48	60	78	106	150	166	190	230	290
F	50	72	85	105	145	165	220	250	300
G	38	52	63	81	115	131	170	190	230
Н	M6	M8	M8	M10	M12	M20	M30	M36	M42
øJk6	9	10	14	16	20	25	30	35	48
K 1	20	25	32	45	63	71	80	100	135
K 2	16	21	29	42	63	66	75	95	115
L	22	31	40	54	78	83	100	125	150
L 1	20	22,5	25,5	43	45	65	65	63	97,5
L 2	12	13	15	15	16	30	45	54	80
N	92	120	140	195	240	300	355	380	500
Р	62	74	93	105	149	200	205	270	326
Q	3x3x14	3x3x18	5x5x20	5x5x36	6x6x36	8x7x56	8x7x56	10x8x56	14x9x90
Т	12	12	18	23	32	40	40	50	60
øU	28	32	40	50	65	90	125	150	180
ø W	26	30	38,7	46	60	85	120	145	170
Υ	50	62	75	82	117	160	165	220	266
Tête II									
ø d	50	65	80	90	110	150	220	260	310
ø e	40	48	60	67	85	117	170	205	240
ø f	4xØ7	4xØ9	4xØ11	4xØ11	4xØ13	4xØ17	4xØ25	4xØ32	4xØ38
g	19	24	28	28	34	57	72	92	142
S	16	20	21	23	30	50	60	80	120
r	6	7	8	10	15	20	30	40	40
øх	26	30	40	46	60	85	120	145	170
Tête III									
h	12	19	20	22	29	48	58	78	118
i	M8	M12	M14	M20	M30	M36	M64x3	M72x3	M100x3
k	15	23	27	27	33	55	70	90	140
Tête IV									
I h10	12	15	20	30	35	40	80	110	120
m	40	55	63	78	105	147	175	220	330
n	20	30	36	45	65	83	130	170	230
ø o H8	10	14	16	24	32	40	60	80	90
p1	33	44	52	58	74	104	117	147	222
ø u	25	30	40	45	60	85	120	160	170
V	10	15	18	25	35	50	70	85	130
v1	30	40	45	53	70	97	105	135	200
Tête GK									
I H13	8	12	14	20	30	36	-	-	-
m	42	62	72	105	160	188	-	-	-
n	26	37	44	65	100	116	-	-	-
ø o H9	8	12	14	20	30	35	-	-	-
p1	35	52	63	85	124	151	-	-	-
u	16	24	27	40	60	70	-	-	-
ø u1	14	20	24	34	52	60	-	-	-
V	16	24	28	40	60	72	-	-	-
v1	32	48	56	80	120	144	-	-	-

 $^{^{\}star}$ Broche A * avec sécurité anti-dévissage ou broche pour la version KGT, ** Dimensions pour broche Ku sur demande

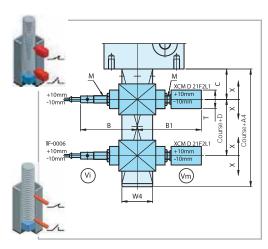
3.6 Schémas cotés de la série MERKUR


3.6.1.2 Deuxième bague de guidage 2FR

Pour toutes les tailles de la série MERKUR Standard

3.6.1.3 Avec interrupteurs fin de course rapportés Sm/Si

Toutes les dimensions sont livrables avec des fins de course mécaniques Sm ou inductifs Si.


Taille	A4	В	B1	С	D	Т	М	Ø W2	Х
				Sm/Si	Sm/Si				
M 0	105	84	95	44/38	12/24	50	M12x1	28	±10
M 1	105	86	97	44/38	12/24	50	M12x1	32	±10
M 2	110	90	100	44/38	16/28	50	M12x1	40	±10
M 3	115	94	104	49/43	16/28	50	M12x1	50	±10
M 4	135	101	111	58/52	20/32	50	M12x1	65	±10
M 5	140	114	123	66/60	20/32	50	M12x1	90	±10
M 6	135			66/60	25/37	50	M12x1	125	±10
M 7	170	sur de	emande	76/70	30/42	50	M12x1	150	±10
M 8	160			86/80	30/42	50	M12x1	180	±10

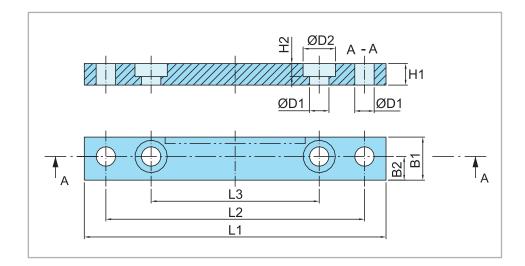
3.6.1.4 Immobilisation en rotation V

Pour obtenir un mouvement linéaire, le vérin doit être prévu avec immobilisation en rotation de l'axe fileté. Ceci peut être réalisé au niveau du montage sur la structure ou avec une immobilisation en rotation incorporée au modèle Merkur, avec tube carré.

Taille	A3	W4
M 1	60	35x35
M 2	70	40x40
M 3	80	50x50
M 4	100	70x70
M 5	115	90x90
M 6	120	125x125
M 7	125	150x150
M 8	155	180x180

3.6.1.5 Immobilisation en rotation avec des interrupteurs fin de course rapportés Vm/Vi

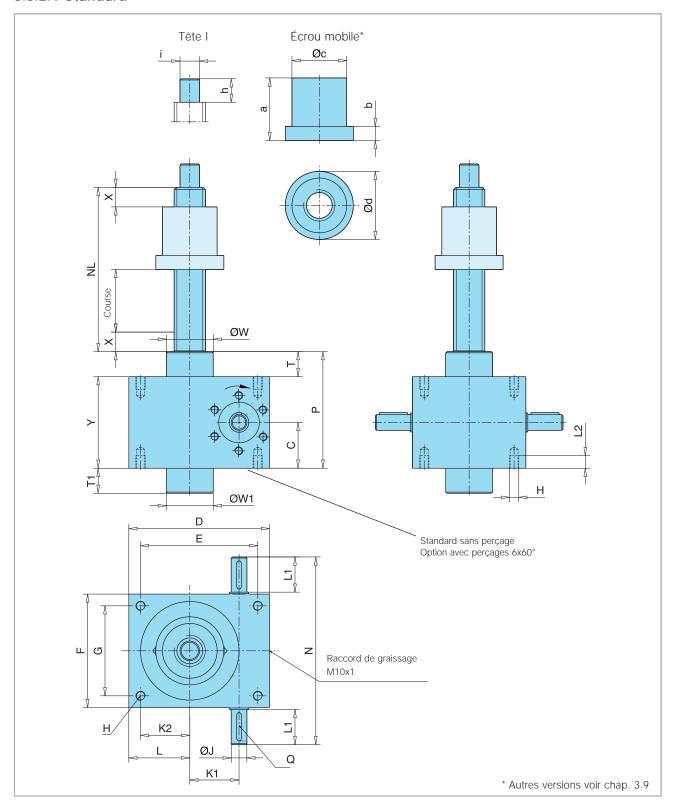
Toutes les dimensions sont livrables avec des fins de course mécaniques Vm ou inductifs Vi.


Taille	A4	В	B1	С	D	T	М	W4	Χ
				Vm/Vi	Vm/Vi				
M 1	105	86	96	44/38	12/24	50	M12x1	35x35	±10
M 2	110	88	100	44/38	16/28	50	M12x1	40x40	±10
M 3	115	93	105	49/43	16/28	50	M12x1	50x50	±10
M 4	135	101	110	58/52	20/32	50	M12x1	70x70	±10
M 5	145	113	125	66/60	20/32	50	M12x1	90x90	±10
M 6	135			66/60	25/37	50	M12x1	125x125	±10
M 7	170	sur de	sur demande		30/42	50	M12x1	150x150	±10
M 8	160			86/80	30/42	50	M12x1	180x180	±10

www.pfaff-silberblau.com 73

3.6 Schémas cotés de la série MERKUR

3.6.1.6 Plaques de fixation


Taille	L1	L2	L3	B1	B2	H1	H2	ØD1	ØD2
M 0	90	75	48	12	6	10	5	6,6	11
M 1	120	100	60	20	10	10	5	9,0	15
M 2	140	120	78	20	11	10	6	9,0	15
M 3	170	150	106	25	12	12	7	11,0	18
M 4	230	204	150	30	15	16	8	13,5	20
M 5	270	236	166	40	17	25	14	22,0	33
M 6									
M 7		sur demande							
M 8									

3.6 Schémas cotés de la série MERKUR

3.6.2 Type 2

3.6.2.1 Standard

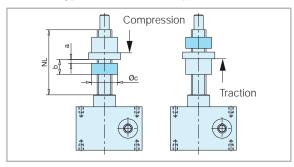
www.pfaff-silberblau.com

75

3.6 Schémas cotés de la série MERKUR

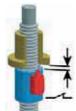
Taille	M 0	M 1	M 2	M 3	M 4	M 5	M 6	M 7	M 8
Axe fileté	Tr 14x4	Tr 18x4	Tr 20x4	Tr 30x6	Tr 40x7	Tr60x9	Tr80x10	Tr100x10	Tr120x14
С	25	31	37,5	41	58,5	80	82,5	110	133
D	60	80	100	130	180	200	240	290	360
Е	48	60	78	106	150	166	190	230	290
F	50	72	85	105	145	165	220	250	300
G	38	52	63	81	115	131	170	190	230
Н	M 6	M 8	M 8	M 10	M 12	M 20	M 30	M 36	M 42
øJk6	9	10	14	16	20	25	30	35	48
K 1	20	25	32	45	63	71	80	100	135
K 2	16	21	29	42	63	66	75	95	115
L	22	31	40	54	78	83	100	125	150
L 1	20	22,5	25,5	43	45	65	65	63	97,5
L 2	12	13	15	15	16	30	40	54	80
N	92	120	140	195	240	300	355	380	500
NL	course + 52	course + 56	course + 70	course + 85	course + 110	course + 125	course + 170	course + 195	course + 215
Р	62	74	93	105	149	200	205	270	326
Q	3x3x14	3x3x18	5x5x20	5x5x36	6x6x36	8x7x56	8x7x56	10x8x56	14x9x90
T	12	12	18	23	32	40	40	50	60
T1 ¹⁾	12	12	18	23	32	40	40	50	60
ø W	26	30	36,1	46	60	85	120	145	170
ø W1 ¹⁾	26	30	38,7	46	60	85	120	145	170
Safety X	10	12	15	20	25	25	25	25	30
Υ	50	62	75	82	117	160	165	220	266
Écrou mobile									
а	32	32	40	45	60	75	120	145	155
b	10	10	12	15	18	25	35	35	50
ø c h9	40	40	45	50	70	90	130	150	160
ø d	50	50	65	80	87	110	155	190	225
Tête I									
ø i j6	8	12	15	20	25	40	60	80	95
h	12	15	20	25	30	45	75	100	120

¹⁾ Le tourillon peut être supprimé, à la demande, sur MERKUR 0 ou MERKUR 5.


3.6 Schémas cotés de la série MERKUR

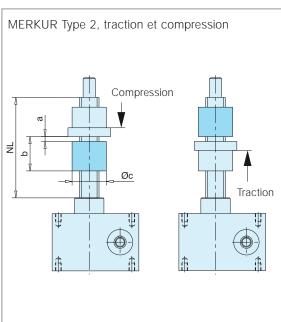
.

3.6.2.2 Avec écrou de sécurité court


Cet assemblage absorbe la charge axiale en cas de rupture de l'écrou principal. Ceci augmente considérablement la sécurité de fonctionnement des composants d'entraînement. De plus, l'écrou de sécurité permet un contrôle exact de l'usure de l'écrou principal, étant donné que la distance entre les deux écrous se modifie progressivement au cours du processus d'usure. Pour les vérins à vis dotés d'un écrou de sécurité court, il convient de toujours tenir compte de la direction principale de la charge appliquée (traction ou compression) ainsi que de la position de montage, car seul un écrou monté conformément aux instructions peut absorber la charge.

MERKUR Type 2, traction et compression

Taille	NL	a ¹⁾	b	Øc*				
M 0		sur der	mando					
M 1		Sui dei	nanue					
M 2	Course + 95	5	25	45				
M 3	Course + 120	5	35	50				
M 4	Course + 150	5	40	70				
M 5	Course + 185	5	60	90				
M 6	Course + 250	10	80	130				
M 7	Course + 275	10	80	150				
M 8	sur demande							


^{*} Diamètre Øc pour écrou de levage FMR

3.6.2.3 Avec écrou de sécurité long (VBG 70 ou VBG 14)

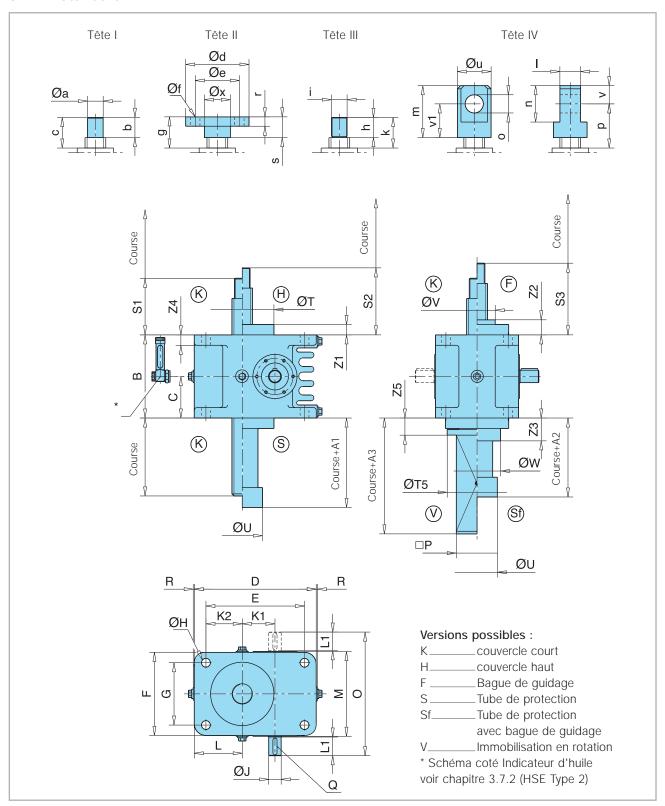
Pour l'utilisation de vérins à vis sans fin sur des scènes de théâtre (réglementations VBG 70), des plate-formes (réglementations VBG 14) ou dans des installations présentant un risque pour les personnes, les composants de levage sont conçus en conformité avec les prescriptions les plus récentes ; entre autres, le dispositif de sécurité empêchant une chute (tiges autobloquantes et/ou freins mécaniques de sécurité dans le dispositif d'entraînement) et le dispositif de synchronisation peuvent être complétés par des composants supplémentaires en cas de besoin.

Taille	NL	a ¹⁾	b	Øc*						
M 0		cur do	manda							
M 1		sur demande								
M 2	Course + 115	5	45	45						
M 3	Course + 140	5	55	50						
M 4	Course + 180	5	70	70						
M 5	Course + 210	5	85	90						
M 6	Course + 305	10	135	130						
M 7	Course + 355	10	160	150						
M 8		sur demande								

^{*} Diamètre Øc pour écrou de levage FMR

Autres versions d'écrous, voir chapitre 3.9

- Écrou mobile à montage articulé
- Écrou mobile TGM-EFM
- · Vérins avec écrou à billes avec bride
- · Écrou mobile avec méplat
- Écrou mobile avec appui sphérique


77

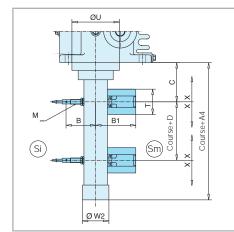
3.7 Schémas cotés de la série HSE

3.7.1 Type 1

3.7.1.1 Standard

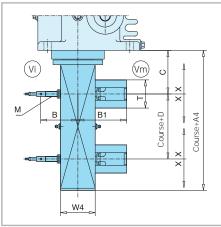
T. 111	202)	0 (41)	EQ 41)	(0.41)	00.41)	400 41)	405 41)	440	200.1 ¹⁾
Taille	32 ²⁾	36.1 ¹⁾	50.1 ¹⁾	63.1 ¹⁾	80.1 ¹⁾	100.1 ¹⁾	125.1 ¹⁾	140	
Axe fileté	Tr 18x6	Tr 24x5	Tr 40x8	Tr 50x9	Tr 60x12	Tr 70x12	Tr100x16	Tr 120x16	Tr 160x20
A 1	22	22	22	22	22	23	22	22	22
A 2	39	44	46	52	61	71	76	86	101
A 3	98	104	117	123	136	146	154	179	199
В	80	105	130	160	200	230	300	350	450
С	40	52,5	65	80	100	115	150	175	225
D	117	138	175	235	275	330	410	490	680
E	95	110	140	190	220	270	330	390	550
F	80	105	130	160	200	230	300	350	460
G	62	80	100	120	150	175	230	260	330
ØН	9	9	13	17	21	28	39	46	66
ØJk6	14	14	16	24	32	38	42	50	70
K 1	32	36	50	63	80	100	125	140	196
K 2	31	40	50	70	75	87,5	110	130	185
L	42	54	67,5	92,5	102,5	117,5	150	180	250
L 1	25,5	18	28	36	58	58	82	82	105
M	83					235	305	355	
		108	133	163	204				470
N	86	112	136	166	206	240	310	360	472
0	140	140	192	238	322	356	474	524	682
■ P	30	40	70	80	90	100	140	180	220
Q	5x5x20	5x5x16	5x5x25	8x7x32	10x8x50	10x8x50	12x8x70	14x9x70	20x12x100
R	3	2	2	2	2	2	5	5	5
S 1	43	45	50	60	70	75	100	120	140
S 2	58	61	68	80	95	105	135	160	190
S 3	66	69	76	89	109	124	154	184	219
Ø T f7	62	72	92	122	152	182	222	262	352
Ø T5	50	-	100	115	130	_	200	260	310
Øυ	29	40	66	82	78	88,5	136	143	198
Øν	35	35	60	70	100	125	140	195	240
øw	45	50	80	100	120	125	140	220	290
Z 1	15	16	18	20	25	30	35	40	50
Z 2					39	49			
	23	24	26	29			54	64	79
Z 3	29	34	39	44	54	64	74	84	109
Z 4	10	12	15	20	25	28	35	45	60
Z 5	27	-	28	33	40	-	54	63	73
Tête I									
Ø a k6	18h9	15	20	30	40	50	80	95	130
b	20	24	29	39	49	54	79	99	119
С	37	44	49	59	69	74	99	119	139
	37	44	49	39	09	74	99	119	139
Tête II									
Ød	65	72	92	122	150	182	222	262	352
Ø e	45	50	65	85	105	135	170	205	270
Øf	4xø 7	4xø 9	4xø 14	4xø 17	4xø 22	6xø 26	8xø 30	8xø 33	8xø 45
g	43	45	50	60	70	75	100	120	140
r	8	10	12	18	20	25	30	35	50
S	20	25	30	40	50	55	80	100	120
Øх	18	30	35	50	65	85	115	140	185
Tête III								1.5	
h	15	24	29	39	49	54	79	99	119
i	M 18x1,5	M 16x1,5	M 20x1,5	M 30x2	M 42x3	M 56x3	M 80x3	M 100x4	M 140x4
k	37	44	49	59	69	74	99	119	139
Tête IV									
I - 0,2	20	25	30	40	60	75	100	120	160
m	50	60	70	100	130	150	230	300	360
n	30	40	50	70	100	120	160	200	280
Ø o H8	15	20	25	35	50	60	80	100	140
р	55	60	65	85	100	110	170	220	240
Øи	30	40	50	65	90	110	140	170	220
V1	15	20	25	35	50	60	80	100	140
v1	35	40	45	65	80	90	150	200	220

¹⁾ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont dispossibles sur demande.


précédentes. Les dimensions précédentes sont disponibles sur demande. ²⁾ La dimension 32 remplace la dimension de construction précédente 31.

3.7 Schémas cotés de la série HSE

3.7.1.2 Avec interrupteurs fin de course rapportés Sm/Si



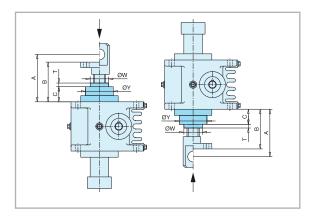
Taille	A4	В	B1	С	D	Т	М	ØU	Ø W2	Х
32					*sur de	mande				
36.1	140	86	*	70	12	*	12x1	72	42	±10
50.1	174	97	110	77	20	58	12x1	92	66	±10
63.1	180	106	110	88	25	58	12x1	122	82	±10
80.1	220	114	120	100	30	58	12x1	152	96	±10
100.1										
125.1										
140					*sur de	mande				
200.1										

3.7.1.3 Immobilisation en rotation avec interrupteurs fin de course rapportés Vm/Vi

Taille	A4	В	B1	С	D	Т	М	W4	Х
32					sur demar	ndo.			
36.1				;	sui ueillai	iue			
50.1	137	102	115	68	20	58	12x1	70x70	±10
63.1	150	107	115	75	25	58	12x1	80x80	±10
80.1	170	112	117	85	30	58	12x1	90x90	±10
100.1									
125.1					sur demar	ndo			
140				;	sui uelliai	iue			
200.1									

3.7.1.4 Avec écrou de sécurité court

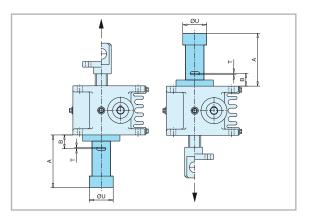
Cet écrou de sécurité absorbe la charge axiale en cas de rupture de l'écrou principal. Ceci augmente considérablement la sécurité de fonctionnement des composants d'entraînement. De plus, cet écrou permet un contrôle exact de l'usure de l'écrou principal, étant donné que la distance entre les deux écrous se modifie progressivement au cours du processus d'usure. Pour les vérins à vis dotés d'un écrou de sécurité court, il convient de toujours tenir compte de la direction principale de la charge appliquée (traction ou compression) ainsi que de la position de montage, car seul un écrou monté conformément aux instructions peut absorber la charge.



3.7 Schémas cotés de la série HSE

HSE Type 1, compression

Taille	Α	В	С	T ¹⁾	ØY	øw
32	80	63	24	1	50	30
36.1	85	70	24	1	55	35
50.1	100	85	43,5	1,5	85	60
63.1	125	100	48,5	1,5	105	70
80.1	160	130	57	3	125	90
100.1	170	135	57	3	155	110
125.1	250	180	76	4	190	140
140			sur de	mande		
200.1	335	235	90	5	300	240



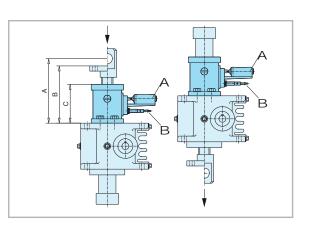
HSE Type 1, traction

Taille	А	В	T ¹⁾	ØU
32	course + 67	25	1	47
36.1	course + 67	25	1	56
50.1	course+ 77	35	1,5	80
63.1	course + 82	40	1,5	92
80.1	course + 102	60	3	107
100.1	course + 102	60	3	132
125.1	course + 122	80	4	158
140	sur demande			
200.1	course + 137	95	5	272

 $^{^{1)}}$ correspond à l'état neuf. Si "T = 0", l'écrou de levage et l'écrou de sécurité doivent être remis en état

3.7.1.5 Avec écrou de sécurité long (BGV C1 bzw. VBG 14)

Pour l'utilisation de vérins à vis sans fin sur des scènes de théâtre (réglementations BGV C1), des plate-formes (réglementations VBG 14) ou dans des installations présentant un risque pour les personnes, les composants de levage sont conçus en conformité avec les prescriptions les plus récentes; entre autres, le dispositif de sécurité empêchant une chute (tiges autobloquantes et/ou freins mécaniques de sécurité dans le dispositif d'entraînement) et le dispositif de synchronisation peuvent être complétés par des composants supplémentaires en cas de besoin.

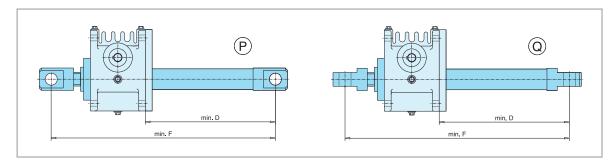


HSE Type 1, compression et traction

Taille	А	В	С				
32							
36.1		sur demande					
50.1							
63.1	220	195	135				
80.1	270	240	170				
100.1	330	295	220				
125.1	360	290	190				
140							
200.1		sur demande					

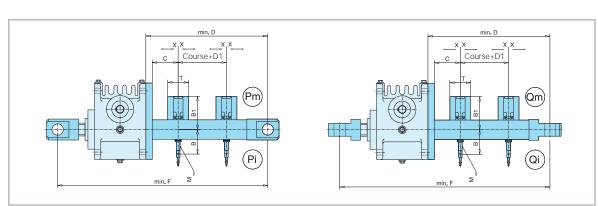
Interrupteur de fin de course mécanique B Interrupteur de fin de course inductif A

Pour les caractéristiques techniques et les schémas cotés, se réferer au chapitre des accessoires



3.7 Schémas cotés de la série HSE

3.7.1.6 Exécution articulée


Pour que les vérins à vis puissent effectuer des pivotements ou des basculements, les composants d'entraînement doivent être fixés en deux points tout en restant mobiles. Ceci peut être réalisé par une tête IV des deux côtés, ou par une tête articulée.

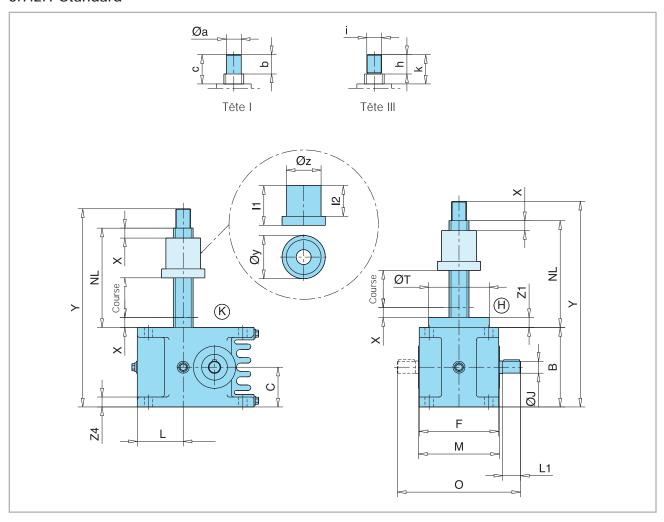
Taille	D	F				
32	sur de	mande				
36.1	Course + 114	Course + 303				
50.1	Course + 140	Course + 361				
63.1	Course + 180	Course + 454				
80.1	Course + 195	Course + 534				
100.1						
125.1	sur demande					
140						
200.1						

3.7.1.7 Exécution articulée avec des interrupteurs fin de course rapportés

Taille	В	B1	С	D	D1	F	М	Т	Х
32				9	sur demande				
36.1	86	93	50	155	12	344	12x1	58	± 10
50.1	97	105	50	175	20	396	12x1	58	± 10
63.1	106	110	50	205	25	479	12x1	58	± 10
80.1	114	120	50	250	40	589	12x1	58	± 10
100.1									
125.1		sur demande							
140					sa. asiaiiae				
200.1									

Application

Vérin à vis sans fin HSE hautement performant en version spéciale pour mouvement élévatoire de 0° à 90° d'une antenne de 11,1 m


www.pfaff-silberblau.com 83

3.7 Schémas cotés de la série HSE

3.7.2 Type 2

3.7.2.1 Standard

Dimensions manquantes voir type 1.

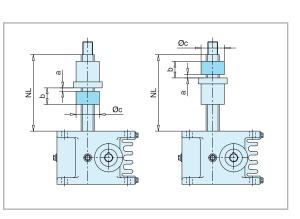
Versions possibles :

K — couvercle court
H — couvercle haut

3.7 Schémas cotés de la série HSE

Taille	32	36.1	50.1	63.1	80.1	100.1	125.1	140	200.1
Axe fileté	Tr 18x6	Tr 24x5	Tr 40x8	Tr 50x9	Tr 60x12	Tr 70x12	Tr100x16		Tr 160x20
В	80	105	130	160	200	230	300		450
С	40	52,5	65	80	100	115	150		225
F	80	105	130	160	200	230	300		460
ØJ k6	14	14	16	24	32	38	42		70
L	42	54	67,5	92,5	102,5	117,5	150		250
L1	15	18	28	36	58	58	82		105
М	83	108	133	163	204	235	305		470
NL Exéc. "K"	course + 85	course + 95	course + 120	course + 140	course + 170	course + 170	course + 200		course + 260
NL Exéc. "H"	course + 100	course + 111	course + 138	course + 160	course + 195	course + 200	course + 235		course + 310
0	140	140	192	238	322	356	474		682
Q	5x5x20	5x5x16	5x5x25	8x7x32	10x8x50	10x8x50	12x8x70		20x12x100
ØT	62	72	92	122	152	182	222		352
Sécurité X	20	20	20	20	20	20	20		20
Υ	NL + 97	NL + 129	NL + 169	NL + 199	NL + 249	NL + 284	NL + 379	sur demande	NL + 569
Z1	15	16	18	20	25	30	35		50
Z4	10	12	15	20	25	28	35		60
Écrou mobile									
I1	45	55	80	100	130	130	160		220
12	35	43	62	78	105	100	115		140
Øy	50	65	87	105	110	120	190		260
Øz h9	40	45	70	80	90	90	150		200
Tête I									
Ø a k6	10	15	30	40	40	50	80		130
b	20	24	39	49	49	54	79		119
С	37	44	59	69	69	74	99		139
Tête III									
h	20	24	39	49	49	54	79		119
i	M 10	M 16x1,5	M 30x2	M 42x3	M 42x3	M 56x3	M 80x3		M 140x4
k	37	44	59	69	69	74	99		139

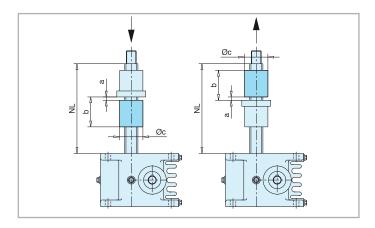
3.7.2.2 Avec écrou de sécurité court


Cet assemblage absorbe la charge axiale en cas de rupture de l'écrou principal. Ceci augmente considérablement la sécurité de fonctionnement des composants d'entraînement. De plus, l'écrou de sécurité permet un contrôle exact de l'usure de l'écrou principal, étant donné que la distance entre les deux écrous se modifie progressivement au cours du processus d'usure. Pour les vérins à vis dotés d'un écrou de sécurité court, il convient de toujours tenir compte de la direction principale de la charge appliquée (traction ou compression) ainsi que de la position de montage, car seul un écrou monté conformément aux instructions peut absorber la charge.

HSE type 2, compression et traction

Taille	a ¹⁾	b	Øc	NL	
				Exéc. K	Exéc. H
32	5	25	40	course +110	course +125
36.1	10	35	45	course +130	course +146
50.1	10	50	70	course +170	course +188
63.1	10	60	80	course +200	course +220
80.1	10	60	90	course +240	course +265
100.1	10	70	90	course +240	course +270
125.1	15	95	150	course +295	course +330
140	sur demande				
200.1	15	115	200	course +375	course +425

 $^{^{1)}}$ correspond à l'état neuf. Si "a = 0", l'écrou de levage et l'écrou de sécurité doivent être remis en état



3.7 Schémas cotés de la série HSE

1

3.7.2.3 Avec écrou de sécurité long (BGV C1 ou VBG 14)

Pour l'utilisation de vérins à vis sans fin sur des scènes de théâtre (réglementations BGV C1), des plate-formes (réglementations VBG 14) ou dans des installations présentant un risque pour les personnes, les composants de levage sont conçus en conformité avec les prescriptions les plus récentes; entre autres, le dispositif de sécurité empêchant une chute (tiges autobloquantes et/ou freins mécaniques de sécurité dans le dispositif d'entraînement) et le dispositif de synchronisation peuvent être complétés par des composants supplémentaires en cas de besoin

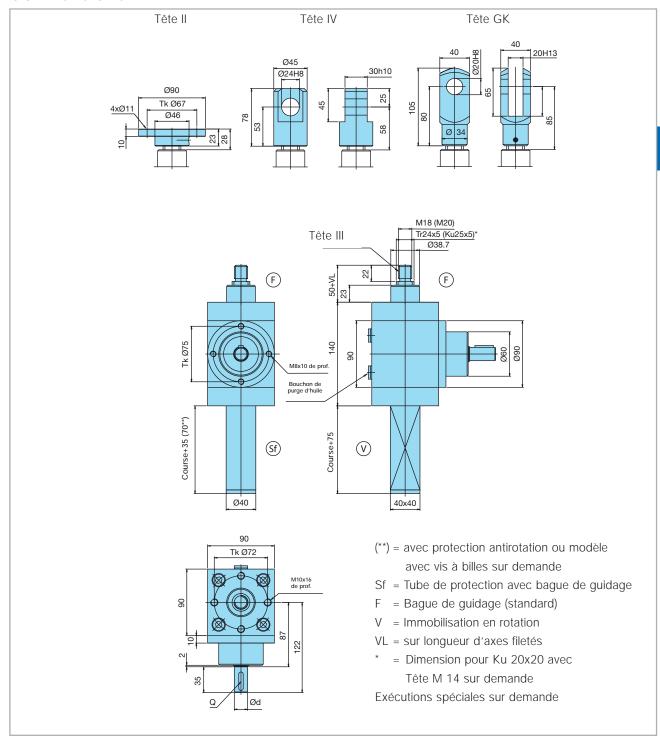
HSE type 2, compression et traction

Taille	a ¹⁾	b	Øc	NL	
				Exéc. K	Exéc. H
32	5	50	40	course +135	course +150
36.1	10	65	45	course +160	course +176
50.1	10	90	70	course +210	course +228
63.1	10	110	80	course +250	course +270
80.1	10	140	90	course +310	course +335
100.1	10	140	90	course +310	course +340
125.1	15	175	150	course +375	course +410
140		sur demande			
200.1	15	235	200	course +495	course +545

 $^{^{1)}}$ correspond à l'état neuf. Si "a=0", l'écrou de levage et l'écrou de sécurité doivent être remis en état

3.7.2.4 Exécution HLA

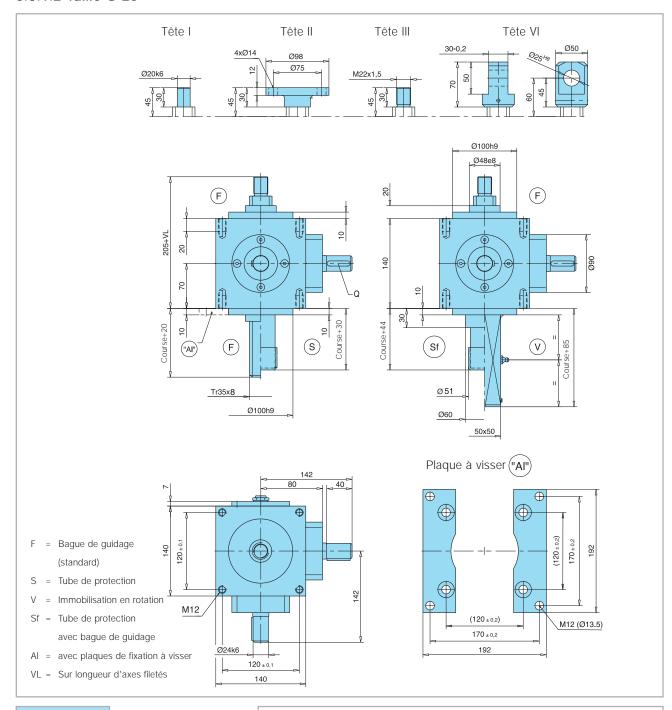
N'hésitez pas à demander notre prospectus «HLA Vérin Linéaire Hautes Performances»



3.8 Schémas cotés de la série SHG

3.8.1 Type 1

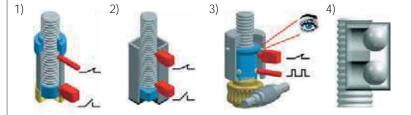
3.8.1.1 Size G 15



Rapport de transm.	Ød j6	Q (DIN 6885)
2 :1	18	A 6x6x25
3 :1	12	A 4x4x25

3.8 Schémas cotés de la série SHG

3.8.1.2 Taille G 25

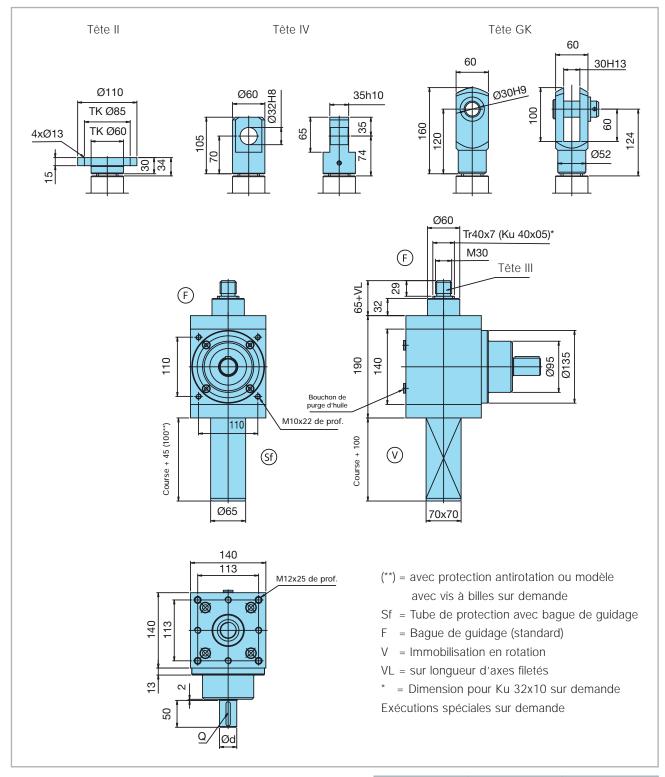


Q (DIN 6885) A 8x7x36

Options:

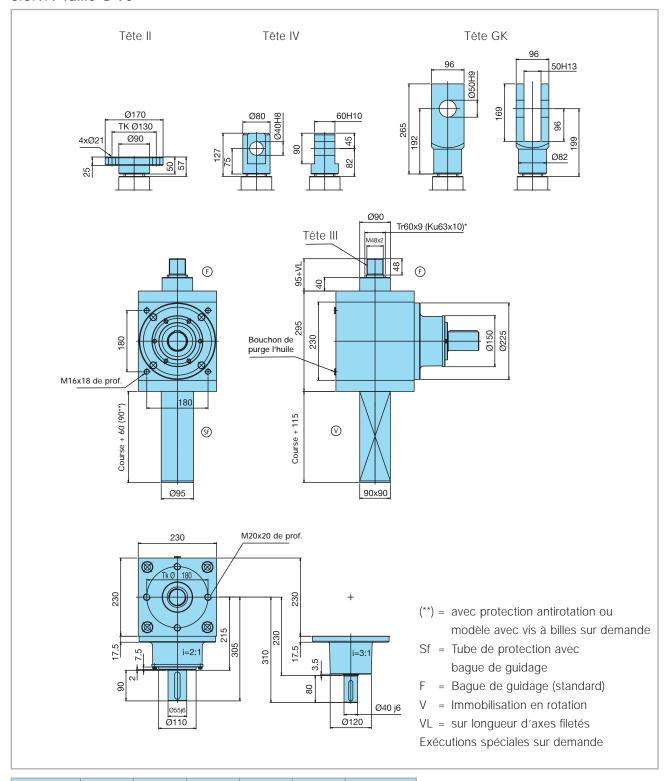
Dimensions relatives aux options disponibles sur simple demande

- 1) Arrêt du levage
- 2) Immobilisation en rotation avec Arrêt du levage
- 3) Écrou de sécurité long (VBG 14)
- 4) Vérin à vis à billes



3.8 Schémas cotés de la série SHG

3.8.1.3 Taille G 50

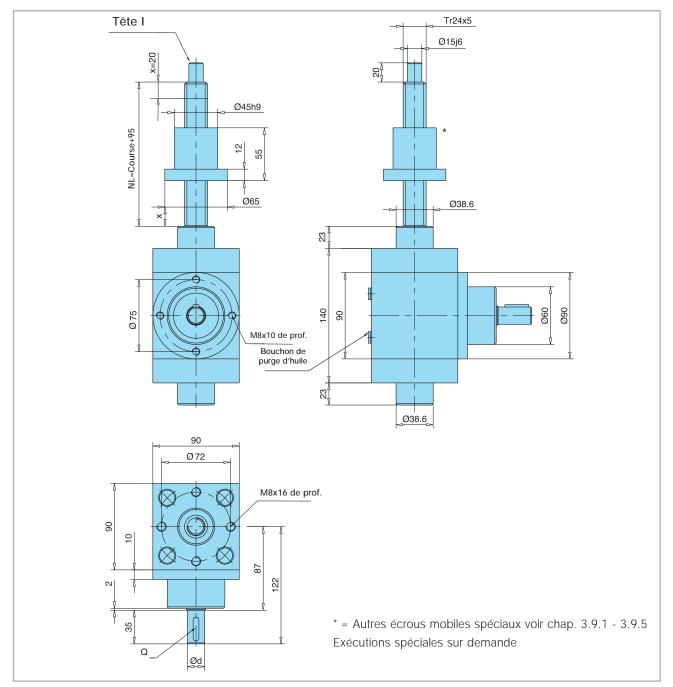


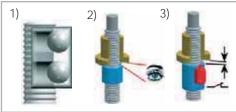
Rapport de transm.	Ød j6	Q (DIN 6885)
2 :1	32	A 10x8x45
3 :1	28	A 8x7x45

3.8 Schémas cotés de la série SHG

3.8.1.4 Taille G 90

Rapport de transm.	Ød j6	ØD1	L1	L2	L3	Q (DIN 6885)
2 :1	55	150	215	305	90	A 16x10x80
3 :1	40	120	230	310	80	A 12x8x63





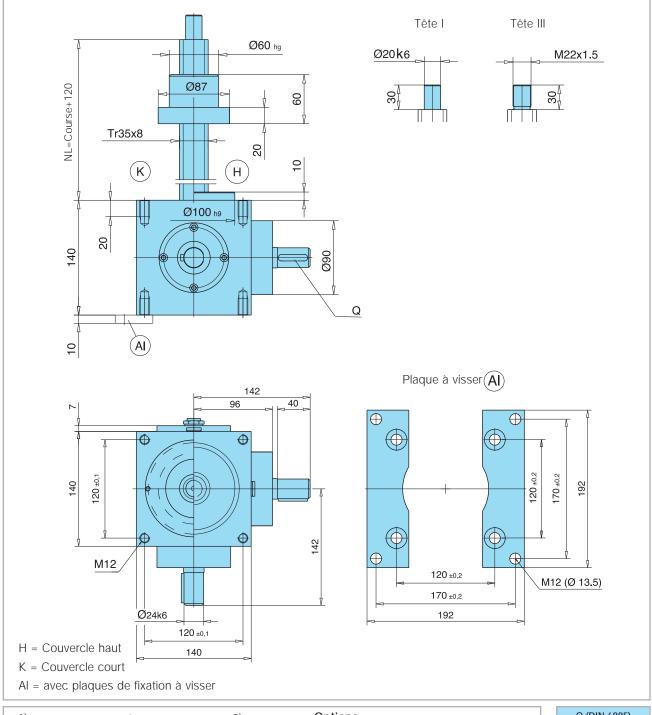
3.8 Schémas cotés de la série SHG

3.8.2 Type 2

3.8.2.1 Taille G 15

Options:

Dimensions relatives aux options disponibles sur simple demande


-) Vérin à vis à billes et écrou en forme de bride voir chap. 3.9.2/3.9.3
- 2) Écrou de sécurité court
- 3) Écrou de sécurité long

Rapport de transm.	Ød j6	Q (DIN 6885)
2 :1	18	A 6x6x25
3 :1	12	A 4x4x25

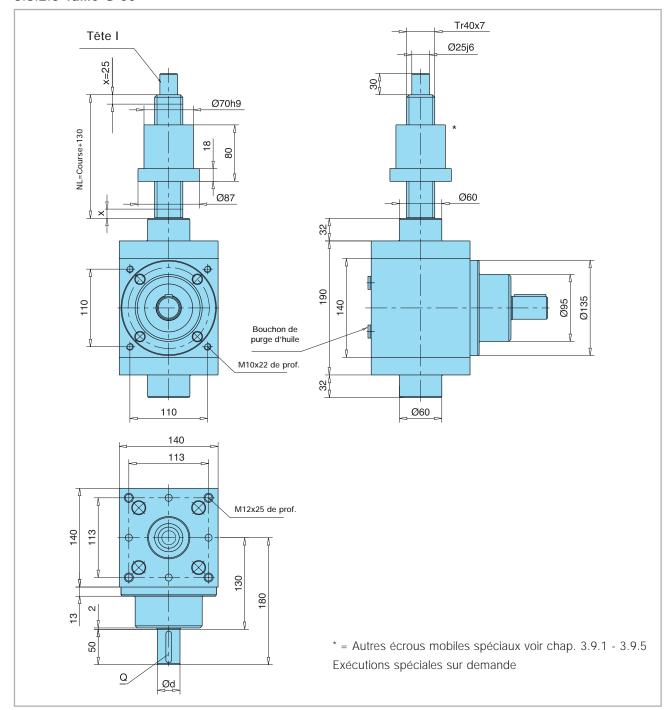
3.8 Schémas cotés de la série SHG

3.8.2.2 Taille G 25

Options:

Dimensions relatives aux options disponibles sur simple demande

- Vérin à vis à billes (Écrou en forme de bride voir chap. 3.9.3)
- 2) Écrou de sécurité court3) Écrou de sécurité long


Q (DIN 6885) A 8x7x36

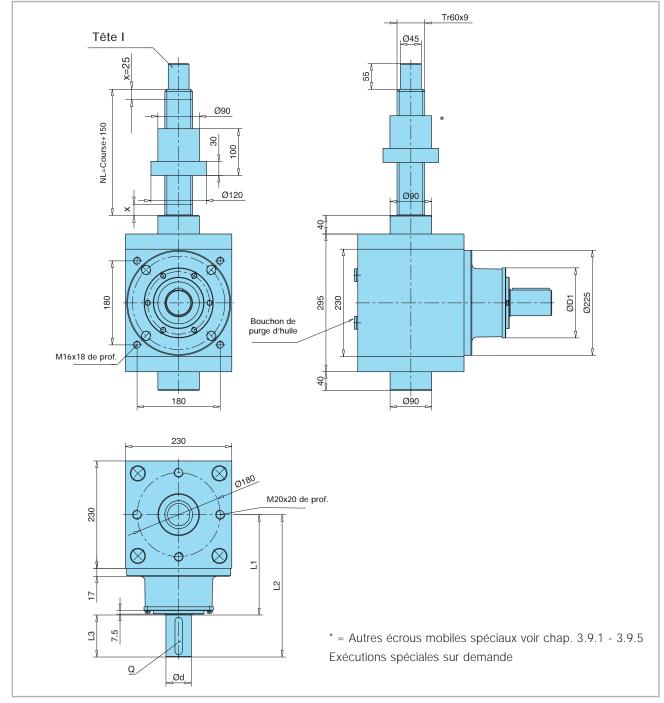


3.8 Schémas cotés de la série SHG

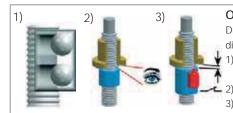
3.8.2.3 Taille G 50

Optionen:

Dimensions relatives aux options disponibles sur simple demande


- 1) Vérin à vis à billes et écrou en forme de bride voir chap. 3.9.2/3.9.3
- 2) Écrou de sécurité court
- 3) Écrou de sécurité long

Rapport de transm.	Ød j6	Q (DIN 6885)
2 :1	32	A 10x8x45
3 :1	28	A 8x7x45

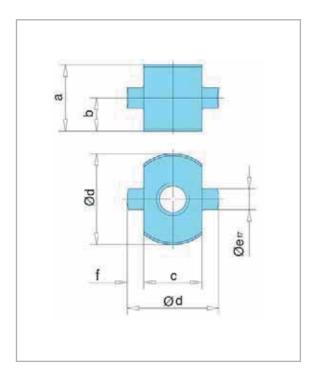


3.8 Schémas cotés de la série SHG

3.8.2.4 Taille G 90

Rapport de transm.	Ød j6	ØD1	L1	L2	L3	Q (DIN 6885)
2 :1	55	150	215	305	90	A 16x10x80
3 :1	40	120	230	310	80	A 12x8x63

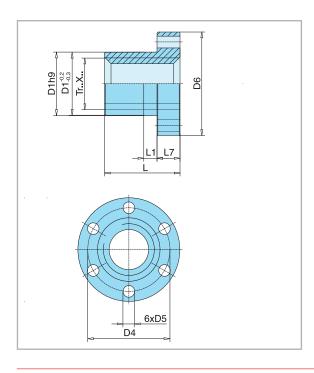
Options:


Dimensions relatives aux options disponibles sur demande

- 1) vérin à vis billes et écrou en forme de bride voir chap 3 9 2/3 9
- en forme de bride voir chap. 3.9.2/3.9.3 2) Écrou de sécurité court
- 3) Écrou de sécurité long

3.9 Schémas cotés des écrous mobiles spéciaux

3.9.1 Écrou mobile articulé LWZ


Série SHE / MERKUR M

Та	ille	a	b	С	Ød	Øe	f
0,5	M1	45	22,5	35	50	14	7,5
1.1	M2	50	25	40	60	18	10
3.1	M3	60	30	50	80	25	15
5.1	M4	70	35	62	95	35	16,5
15.1	M5	90	45	80	130	50	25
20.1	-	120	60	92	150	65	29
25	M6	145	72,5	120	190	75	35
35	35 M7			sur do	mande		
50.1	M8			Sui de	manue		

Série HSE

Taille	а	b	С	Ød	Øe	f				
32	45	22,5	35	50	14	7,5				
36.1	50	25	40	60	18	10				
50.1	60	30	50	80	25	15				
63.1	70	35	62	95	35	16,5				
80.1	120	60	80	130	50	25				
100.1	120	60	92	150	65	29				
125.1										
140		sur demande								

3.9.2 Écrou mobile avec trous sur la collerette TFM-EFM

TFM-EFM pour série SHE

Taille	D1h9	D4	D5	D6	L	L1	L7
. 1.1	45	60	7	75	40	-	12
3.1	50	65	9	80	45	-	15
5.1	70	85	9	100	60	-	18
15.1	90	110	11	130	75	-	25
20.1	90	115	13,5	145	100	-	30
25	130	160	17,5	190	120	-	35

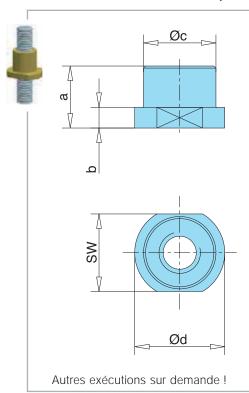
TFM-EFM pour série MERKUR M / SHG G

Taille	D1	D4	D5	D6	L	L1	L7
MO	28	38	6	48	35	8	12
M1	28	38	6	48	44	8	12
M2	32	45	7	55	44	8	12
G15	32	45	7	55	44	8	12
M3	38	50	7	62	46	8	14
M4 / G50	63	78	9	95	73	10	16
M5 / G90	85	105	11	125	99	10	20

3.9 Schémas cotés des écrous mobiles spéciaux

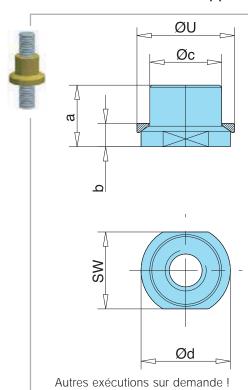
3.9.3 Écrou individuel en forme de bride EFM pour vis à billes Ku pour toutes les séries

Taille Ku	Valeurs o	le charge					Dim. des	écrous				Écrou de sécurité
d0 x P - Dw - i	C _{dyn} [kN]	C _{stat} [kN]	D1	D4	D5	D6	L1	L7	L12	S	Schéma de perçage	LF
20 x 05RH - 3,5 - 4	22,7	42,6	36	47	6,6	58	10	10	43	M6	1	15
20 x 10RH - 3,5 - 2	14,0	21,3	36	47	6,6	58	10	10	26	M6	1	20
25 x 05RH - 3,5 - 4	24,2	54,8	40	51	6,6	62	10	10	43	M6	1	15
25 x 10RH - 3,5 - 3	19,8	41,1	40	51	6,6	62	16	10	59	M6	1	20
32 x 05RH - 3,5 - 5	30,8	91,4	50	65	9	80	10	12	50	M6	1	15
32 x 10RH - 5 - 3	36,6	74,5	50	65	9	80	16	12	40	M6	1	25
40 x 10RH - 7 - 4	79,2	170,5	63	78	9	93	16	14	76	M8x1	2	30
40 x 20RH - 7 - 2	48,7	85,3	63	78	9	93	17	14	51	M8x1	2	50
50 x 10RH - 7 - 6	112,1	328,8	75	93	11	110	16	16	101	M8x1	2	30
50 x 20RH - 12,7 - 3	158,0	244,8	85	103	11	120	16	16	117	M8x1	2	50
50 x 24RH - 12,7 - 3	158,0	244,8	85	103	11	120	18	16	92	M8x1	2	55
63 x 10RH - 7 - 6	122,8	438,2	90	108	11	125	16	18	103	M8x1	2	30
63 x 20RH - 12,7 - 3	173,5	333,2	95	115	13,5	135	25	20	121	M8x1	2	35
80 x 10RH - 7 - 6	135,0	584,5	105	125	13,5	145	16	20	105	M8x1	2	30
80 x 20RH - 12,7 - 5	282,0	800,7	125	145	13,5	165	25	25	170	M8x1	2	50
100 x 10RH - 7 - 6	146,2	749,9	125	145	13,5	165	16	22	107	M8x1	2	30
100 x 20RH - 12,7 - 6	336,6	1203,1	150	176	17,5	202	25	30	195	M8x1	2	60
125 x 10RH - 7 - 6	157,9	952,6	150	170	13,5	190	25	25	110	M8x1	2	40
125 x 24RH - 12,7 - 6	373,9	1622,2	170	196	17,5	222	25	40	235	M8x1	2	60
160 x 20RH - 15 - 6	522	2476		sur demande								


D'autres écrous vis à billes Ku sont livrables sur demande

3.9 Schémas cotés des écrous mobiles spéciaux

3.9.4 Écrou mobile avec méplats LSF


Série SHE / MERKUR M

Tai	lle	a	b	Øc	Ød	SW
0,5	M1	32	10	40	50	44
1.1	M2	40	12	45	65	50
3.1	M3	45	15	50	80	62
5.1	M4	60	18	70	87	75
15.1	M5	75	25	90	110	95
20.1	-	100	30	90	120	100
25	M6	120	35	130	155	135
35	M7	145	35	150	190	160
50.1	M8	155	50	160	225	180

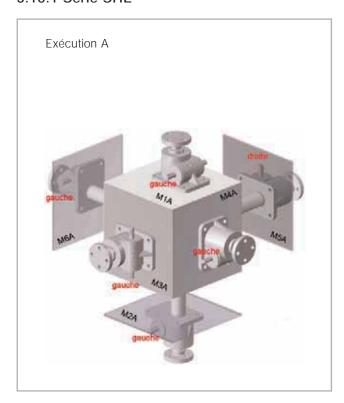
Série HSE

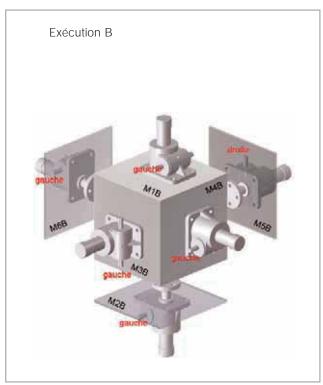
Taille	a	b	Øc	Ød	SW
32	45	12	40	50	44
36.1	55	15	45	65	50
50.1	80	18	70	87	75
63.1	100	22	80	105	85
80.1	130	25	90	110	95
100.1	130	30	90	120	100
125.1	160	45	150	190	160

3.9.5 Écrou mobile avec appui sphérique LSA

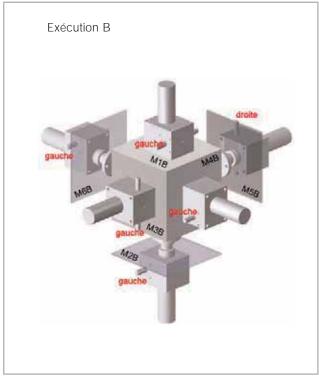
Série SHE et MERKUR M

Taille	a	b	Øc	Ød	ØU	SW
0,5	32	10	40	50	55	44
1.1	40	12	45	65	65	50
3.1	45	15	50	80	82	62
5.1	60	18	70	87	95	75
15.1	75	25	90	110	120	95
20.1	100	30	90	120	120	100
25/M6	120	35	130	155	175	135
35/M7	145	35	150	190	195	160
50.1/M8	155	50	160	225	220	180

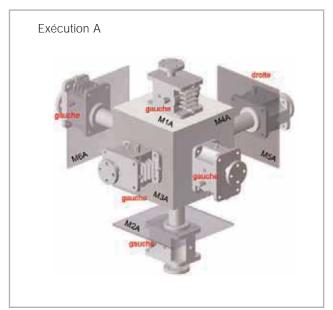

Série HSE

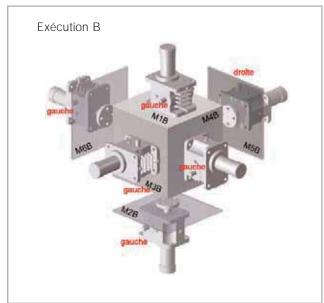

Taille	a	b	Øc	Ød	ØU	SW
32	45	12	40	50	55	44
36.1	55	15	45	65	65	50
50.1	80	18	70	87	95	75
63.1	100	22	80	105	110	85
80.1	130	25	90	110	120	95
100.1	130	30	90	120	120	100
125.1	160	45	150	190	195	60

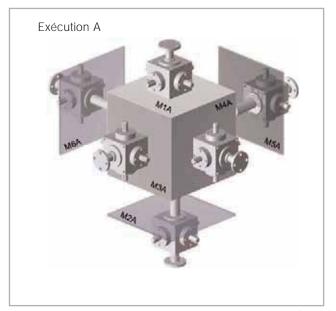

3.10 Positions de montage, repérage des arbres

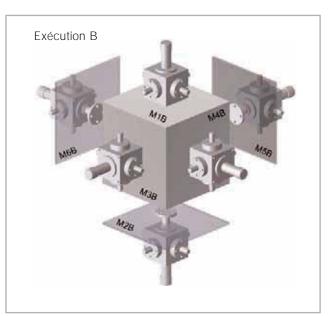

3.10.1 Série SHE

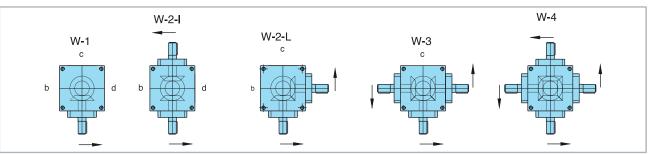
3.10.2 Série MERKUR






3.10 Positions de montage, repérage des arbres


3.10.3 Série HSE



3.10.4 Série SHG

Position de montage des arbres/Position du graisseur (b/c/d) - Vue coté tige filetée

www.pfaff-silberblau.com 99

3.11 Indications à fournir lors d'une commande

3.11.1 Série SHE

c	1 2 HE- 🗆 🗀 - 🖂				7 MM MMMK			10	_1	-	12	1.	3 ′	14
3	□ □ - □□□ -□		M-MM-	MMM-	MM-MMM	N-MMM	A M-MM !	AMM XMM						
	Série				SHF				7	Positio	on de mor	ntage	Λ	M1A / M1B / M2A / M2B
	Taille					1) / 2 /	3.1 ¹⁾ / 5.	1 ¹⁾		OSITI)	nage _		M3A / M3B / M4A / M4B
							25 / 35							M5A / M5B / M6A / M6B
					75 / 100	.1 ¹⁾ / 1	50 / 200	.1 ¹⁾	8 .	Γête				
	Type de coi	nstr	uction	ı						type 1]		1	/ / / V
	Execution _								ĺ	type 2	·]		1	/ III
	Variante cô	té b	roche											Course (mm)
	[type 1]				. F				10 '	/L [typ	oe]		V	/L (mm)
	[type 2]				. 0					NL [typ	oe]		N	NL (mm)
)	Variante cô	té g	jaine d	le pro	otection				11	Rappo	rt de tran	sm	N	N/L
	[type 1]				K/F/S	/ Sf /	Se / Si /	Sm	12	Axe fil	eté		T	Tr (DxP) / Ku (DxP)
					V / Ve / '	Vi / Vm	1		13	Abre c	l'entraîner	ment _	b	des deux côtés),
	[type 2]				. 0								r	(droite) I (gauche)
									14	Optior	ıs		c	conformément aux indications
													à	a la description ou au dessin
													(9	se reporter au chapitre 3.5)

¹ La dimension X.1 remplace la dimension de construction précédente. Les nouvelles dimensions de construction sont compatibles avec les dimensions précédentes. Les dimensions précédentes sont disponibles sur demande

3.11.2 Série MERKUR

	1	2	3	4	5	6	7	8	9	10 11	
VIX.	EXRIK-W R	I-XX]-	-888	- -	X-XX XXX	XXX-X				
	Série			_ MER	RKUR			6	Course		Course (mm)
)	Taille			_ M0 /	/ M1 / M:	2 / M3 / N	14	7	VL [type 1]		VL (mm)
				M5 /	/ M6 / M	7 / M8			NL [type 2]		NL (mm)
3	Type de co	nstruc	tion _	_1/2)			8	Rapport de tra	ansm	N / L
1	Position de	monta	age _	M1A	/ M1B /	M2A / M2	2B	9	Axe fileté		Tr (DxP) / Ku (DxP)
			_	МЗА	/ M3B /	M4A / M4	4B	10	Arbre d'entraî	nement	b (des deux côtés)
				M5A	/ M5B /	M6A / M6	6B	11	Options		conformément aux indications
5	Tête [type	1]		_ /	I / IV / G	K					à la description ou au dessin
	[type	2]		_1							(se reporter au chapitre 3.6)

3.11.3 Série HSE

	1	2	3	4	5	6	7	8	9	10	11	12 13	
40	§-ÆXX	- -		×-××]- -	XXX-XI	XXX-X-	-NN NNNX	⊠-⊠				
	Série				HSE				7	Tête [t	ype 1]	1/	
2	Taille				32 ²⁾	/ 36.1 ²) / 50.1 ²	²⁾ / 63.1 ²⁾		[t	ype 2]	1/	III
					80.1	1 ²⁾ / 100).1 ²⁾ /12	25.1 ²⁾ / 200	.1 ²⁾ 8	Course	9	C	ourse (mm)
3	Type				1/:	2			9	VL [typ	e 1]	VI	_ (mm)
1	Exécu	tion	côté	axe fil	eté					NL [typ	e 2]	N	L (mm)
	[type 1]			Κ/	H/F			10	Rappor	t de transm.	N	/ L
	[type 2	2]			K /	Н			11	Axe file	eté	Tr	(DxP) / Ku (DxP)
5	Exécu	tion	côté	tube c	le prote	ection			12	Arbre d	'entraînemei	ntr(droite)
	[type 1]			K/I	1/S/S	f / Sm / :	Si/V/Vm/	Vi	(voir ch	ap. 3.10.3)	1 (9	gauche)
	[type 2	2]			K /	Н						b	(des deux côtés)
6	Position	on d	e mor	ntage	M1	4 / M1E	3 / M2A	/ M2B	13	Option	S	co	onformément aux indications
					M3/	4 / M3E	3 / M4A	/ M4B				à	la description ou au dessin
					M5/	4 / M5F	3 / M6A	/ M6B				(5)	e reporter au chapitre 3.7)

²⁾ La dimension 32 remplace la dimension de construction 31 précédente et les dimensions X.1 remplacent les dimensions de construction précédentes. Les dimensions précédentes sont disponibles sur demande.

3.11 Indications à fournir lors d'une commande

3.11.4 Série SHG

Taille G15 / G50 / G90

	1 2	3	4	5	6	7	8	9	10	11	12	13 14
X	4-GXGX	- 🛛 - 🖾 🖂	X-X	- XX-	.] :X-XX		₫-₩₩			
	Série				SHG			8	Course			Course (mm)
	Taille				G15 /	G50 /	G90	9	VL [type	1]		_ VL (mm)
	Type de	const	ructi	on	1/2				NL [type	2]		_ NL (mm)
	Exécutio	n côte	é axe	e fileté				10	Rapport	de transm.		_ 2 :1 / 3 :1
	[type 1]				F			11	Axe filet	é		_ Tr (DxP) / Ku (DxP)
	[type 2] _				F			12	Position	de montage _		_ W1b / W1c / W1d
	Exécutio	n côte	é tub	e de p	rotectio	n			des arbre	·S		W2lb / W2ld / W2Lb
	[type 1]				Sf / V							W2Lc / W3c / W4
	[type 2] .				F			13	Position	de montage	:	Ru / Ro (pour les installation
	Position	de m	onta	ge	M1A	/ M1B /	/ M2A / N	12B	des roue	es		plusieurs vérins, veiller au me
					МЗА	/ M3B /	/ M4A / N	14B				sens de mouvement de l'ax
					M5A	/ M5B /	/ M6A / N	16B				levage/de l'écrou mobile!
	Tête [G1	5 type	e 1]		/	/ IV / G	K					(se reporter au chapitre 3.2
	[G5	0 type	1]		/	/ IV / G	K	14	options	complément	aires	conformément aux indication
	[G9	0 type	1]		/	/ IV / G	K					à la description ou au dess
	[typ	e 2] _			I							(se reporter au chapitre 3.8

Taille G25

	1 2 3 4 5	6 7 8 9	1	0 11	12	13 14 15
X	H-GXXGX-X-XX-XXX-XX		1-NND	IX-XX-XX		
	0.41	SUO.		VII. [1		\(\(\frac{1}{2}\)
	Série		9	VL [type 1]		, ,
	Taille			NL [type 2]		
	Type de construction	_ 1 / 2		• • •		2 :1 / 3 :1
	Exécution côté axe fileté			Axe fileté		
	[type 1]		12	Position de montage _		
	[type 2]	_ K / H		des arbres		W2lb / W2ld / W2Lb
	Exécution côté tube de pro	otection				W2Lc / W3c / W4
	[type 1]	_ F / S / Sf / V	13	Position de montage —		 Ru / Ro (pour les installation
	[type 2]	_ K		des roues		à plusieurs vérins, veiller a
	Position de montage	_ M1A / M1B / M2A / M2B				même sens de mouvemer
		M3A / M3B / M4A / M4B				l'axe de levage/de l'écrou
		M5A / M5B / M6A / M6B				mobile! (se reporter au
	Tête [type 1]	_ 1 / II / III / IV				chapitre 3.2)
	[type 2]		14	Option(s)		Al (plaques de fixations)
	Course			options complémentaire		conformément aux
		_ , ,				indications, à la descriptio
						au dessin (se reporter au
						chapitre 3.8)

4.1 Formes de construction

Série K....13

Série NORMA

Série KA et KV

4.1 Formes de construction

4.1.1 Série K...13

5 dimensions	K 0,5.13 jusqu'à KV 60.13
couple de réduction maxi sur l'arbre petite vitesse	jusqu'à 700 Nm
rapports de transmission K 0,5.13 jusqu'à KV 60.13	1 :1, 2 :1, 3 :1
rapports de transmission KV 60.13	1 :1, 1,5 :1, 2 :1, 3 :1, 4 :1 et 5 :1

- pour les installations à plusieurs vérins, adaptés à la hauteur d'axe à nos composants de levage à vis sans fin
- conception particulièrement optimisée, avec des pieds coulés dans le carter
- Carter en fonte avec une couche d'apprêt

4.1.2 Série NORMA

4 dimensions	NM0 à NM3
couple de sortie maximal	jusqu'à 40 Nm
rapport de transmission	1 :1

- Pas de compensation de hauteur d'axe nécessaire grâce aux dimensions adaptées
- Carter complet avec remplissage standard d'huile
- Rendements élevés grâce à la denture cyclo-palloïde de roue conique
- Longue durée de vie et grande exactitude d'angle par matériaux haut de gamme et procédés de fabrication modernes
- Utilisable dans n'importe quelle position de montage

4.1.3 Série KA et KV

9 dimensions	_KA 1 jusqu'à KA 35 et KV 90 jusqu'à KV 550
couple de réduction maxi sur l'arbre petite vitesse	_jusqu'à 8500 Nm
rapports de transmission	_1 :1, 1,5 :1, 2 :1, 3 :1, 4 :1 5 :1 et 6 :1

- Denture hélicoïdale trempée, rodée
- Carter de forme cubique, usiné sur toutes les faces
- Trous de fixation tous côtés
- Pieds livrables en option
- Exécution livrable avec arbre creux côté sortie
- Exécution livrable avec arbre creux côté entraînement et flasque IEC (flasque carrée sur demande)
- Carter en fonte avec une couche d'apprêt
- Exécution résistante à la corrosion (les différents composants, arbre compris, sont livrables dans une "exécution entièrement en acier inox"
- également utilisable sans aucune modification comme transmission en multiplicateur (jusqu'à i = 2 :1)

4.2 Conception

4.2.1 Caractéristiques techniques

Type de renvoi d'angle	Couple fonct. max. T _{zul} [Nm]	Capacité limite thermique P _{Grenz} [kW] (avec une de 20 % durée d'utilisation ED	Rapport de transmission	Type de denture	Matériau	Quantité d'huile moyenne	Poids entraînement (avec remplissage d'huile)
K 0,5.13	i T _{Betr}	sur 1 heure à 20°C)	1 :1	Denture	G- AlSiCu 4	[i] 0,1	[kg] 1
K 0,5.15	Betr [Nm]	2	2 :1	droite	G- AISICU 4	0,1	1
	1:1 2,6		3 :1				
	2 :1 3,7						
	3 :1 3,5						
K 5.13	Table 4.2.3.1	4,5	1 :1		GG- 20	0,2	5,3
K 11.13	Table 4.2.3.1	8,5	2 :1		GG- 20	0,5	8
K 25.13	Table 4.2.3.1	16	3 :1		GG- 20	1	24
			1 :1				
			1,5 :1				
KV 60.13	Tableau 4.2.3.1	43	2 :1 3 :1		GG- 25	2,0	55
			4 :1				
			5 :1				
NMO	4 Nm	-				0,03	1,2
NM1	10 Nm	-	1 :1	Spiro-	alliage Al	0,06	2,0
NM2	19 Nm	-	1 .1	coniques		0,09	3,2
NM3	40 Nm	-			EN-GJL 250	0,15	7,3
KA 1	Tableau 4.2.3.2	2,5	1 :1		GG- 25	0,1	2
KA 5	Tableau 4.2.3.2	8	1,5 :1			0,2	6
KA 9	Tableau 4.2.3.2	11,5	2 :1			0,3	10
KA 18	Tableau 4.2.3.2	20	3 :1			0,4	20
KA 35	Tableau 4.2.3.2	28	4 :1			1,0	32
KV 90 KV 120	Tableau 4.2.3.3 Tableau 4.2.3.3	56 79	5 :1 6 :1			2,5 5,0	70 100
KV 120 KV 260	Tableau 4.2.3.3	126	0:1			13,5	200
KV 260 KV 550	Tableau 4.2.3.3	155				30	400
K v 220	Tableau 4.2.3.3	155				30	400

4.2.2 Facteurs de service

Conception de l'entraınement : Les valeurs indiquées dans le tableau se réfèrent à une durée d'utilisation de 20 % sur 1 heure et à une température ambiante de 20°C. Il convient d'adapter les puissances admissibles et les couples de transmission aux conditions de service, en utilisant les facteurs f1, f2, f3 et f5.

> $= T_{N2} x f_1 x f_2 x f_3$ $= P_N x f_1 x f_2 x f_3$ $= P_N x f_1 / f_4 / f_5$ $\mathsf{T}_{\mathsf{Betr}}$ $\mathsf{P}_{\mathsf{Betr}}$

 T_{N2} [Nm] = Couple nominal sur arbre petite vitesse $P_{N1}[kW]$ = Puissance nominal d'entraînement

Choix de la puissance en fonction de :

la puissance de service P_{Betr} < p_{zul} suivant tableaux 4.2.3 ou du couple de service $T_{Betr} < T_{zul}$ suivant tableaux 4.2.3 et de la capacité thermique P_{therm} < P_{Grenz} suivant tableaux 4.2.1

Facteur de service f₁ (facteur de démarrage)

 $f_1 = 1.0$ Service sans à-coups ou avec de faibles à-coups

 $f_1 = 1.25$ Service avec à-coups moyens

 $f_1 = 1.4$ Service à forts à-coups

Facteur de service f₂ (de démarrage)

 $f_2 = 1.0$ $f_2 = 1.1$ jusqu'à 20 démarrages par heure jusqu'à 60 démarrages par heure $f_2 = 1.4$ jusqu'à 200 démarrages par heure

Facteur de service f₃ (durée de mise en service)

 $f_3 = 0.8$ jusqu'à 2 heures par jour jusqu'à 8 heures par jour $f_3 = 1.0$ $f_3 = 1.25$ jusqu'à 8 heures par jour

Facteur de service f₄ (durée d'utilisation)

 f_4 = 1,0 pour une durée d'utilisation de 20 %/heure f_4 = 0,85 pour une durée d'utilisation de 40 %/heure $f_4 = 0.75$ pour une durée d'utilisation de 60 %/heure f₄ = 0,65 pour une durée d'utilisation de 80 %/heure f₄ = 0,55 pour une durée d'utilisation de 100 %/heure

Facteur de service f₅ (température d'utilisation)

 $f_5 = 1.0$ à 20°C. $f_5 = 0.75$ à 40°C. $f_5 = 0.6$ à 50°C. $f_5 = 0.5$ à 60°C. $f_5 = 0.2$ à 70°C.

4.2 Conception

4.2.3 Tableaux de puissances

4.2.3.1 Série K 5.13-KV 60.13

Vitesse d'entrée	Vitesse de sortie	K	5.13	K1	1.13	K2!	5.13	KV6	0.13
n ₁ [min ⁻¹]	n ₂ [min ⁻¹]	P ₁	T ₂						
		[kW]	[Nm]	[kW]	[Nm]	[kW]	[Nm]	[kW]	[Nm]
Rapport de transmission 1 :1									
50	50	0,2	42	0,4	75	1,2	230	3,7	700
250	250	1,0	38	1,8	69	5,3	202	15,2	580
500	500	1,9	36	3,2	61	10,0	191	26,2	500
750	750	3,0	38	4,8	61	14,0	178	34,6	440
1 000	1 000	3,7	35	6,0	57	17,5	167	42,9	410
1 500	1 500	4,3	27	8,2	52	26,0	166	55,0	350
3 000	3 000	8,0	25	15,0	48	40,0	127	69,1	220
Rapport de transmission 1,5 :1									
50	33,33	-	-	-	-	-	-	2,4	700
250	166,67	-	-	-	-	-	-	10,6	610
500	333,33	-	-	-	-	-	-	18,9	540
750	500	-	-	-	-	-	-	25,9	495
1 000	666,67	-	-	-	-	-	-	32,8	470
1 500	1 000	-	-	-	-	-	-	43,0	410
3 000	2 000	-	-	-	-	-	-	62,8	300
Rapport de transmission 2 :1									
50	25	0,1	48	0,2	82	0,7	250	1,8	700
250	125	0,6	48	1,1	80	3,2	244	8,4	640
500	250	1.1	42	1,8	69	5,5	210	15,2	580
750	375	1,6	41	2,6	66	7,5	191	20,7	526
1 000	500	2,0	38	3,3	63	9,8	187	26,2	500
1 500	750	3,3	42	4,8	61	14,0	178	35,3	450
3 000	1 500	4,5	29	8,5	54	26,0	166	55,0	350
Rapport de transmission 3 :1									
50	16,67	0,1	48	0,2	90	0,5	260	0,9	500
250	83,33	0,1	48	0,8	87	2,2	252	4,0	460
500	166,67	0,4	48	1,3	74	4,1	235	7,3	420
750	250	1,2	44	1,8	69	5,7	233	9,95	380
1 000	333,33	1,6	44	2,4	69	6,6	189	12,6	360
1 500	500	2,2	42	3,4	65	10,0	191	16,2	310
3 000	1 000	3,9	37	6,1	58	18,0	172	25,1	240
	1 000	3,7	37	0,1	56	10,0	172	25,1	240
Rapport de transmission 4 :1	10.5								400
50	12,5	-	-	-	-	-	-	0,6	480
250	62,5	-	-	-	-	-	-	2,8	430
500	125	-	-	-	-	-	-	5,3	400
750	187,5	-	-	-	-	-	-	7,4	375
1 000	250	-	-	-	-	-	-	9,4	360
1 500	375	-	-	-	-	-	-	12,6	320
3 000	750	-	-	-	-	-	-	18,9	240
Rapport de transmission 5 :1									
50	10	-	-	-	-	-	-	0,5	520
250	50	-	-	-	-	-	-	2,5	480
500	100	-	-	-	-	-	-	4,7	450
750	150	-	-	-	-	-	-	6,6	420
1 000	200	-	-	-	-	-	-	8,4	400
1 500	300	-		-	-	-	-	11,6	370

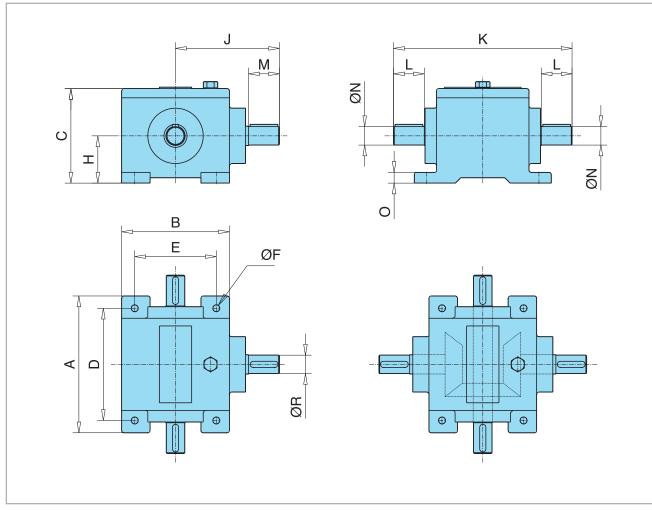
105

4.2 Conception

4.2.3.2 Série KA 1-KA 35

Vitesse d'entrée	Vitesse de sortie	KA	\ 1		A 5		A 9		18		35
n ₁ [min ⁻¹]	n ₂ [min ⁻¹]	P ₁ [kW]	T ₂ [Nm]								
Rapport de transmission 1 :1											
50	50	0,09	18	0,26	50	0,68	130	1,05	200	1,68	320
250	250	0,47	18	1,28	49	3,14	120	4,71	180	7,85	300
500	500	0,89	17	2,41	46	5,76	110	8,90	170	14,14	270
1 000	1 000	1,68	16	4,4	42	9,42	90	15,71	150	23,04	220
1 500	1 500	2,2	14	5,81	37	12,88	82	20,42	130	28,27	180
2 000	2 000	2,51	12	6,91	33	12,29	73	25,13	120	35,60	170
3 000	3 000	3,14	10	8,8	28	18,85	60	28,27	90	40,84	130
		-7		-,-				==/=:		,	
Rapport de transmission 1,5 :1 50	33,33	0.07	18	0.17	F0	0.45	120	0,70	200	1 10	220
		0,06		0,17	50	0,45	130		200	1,12	320
250	166,67	0,31	18	0,86	49	2,09	120	3,32	190	5,41	310
500	333,33	0,59	17	1,68	48	3,84	110	6,28	180	10,12	290
1 000	666,67	1,12	16	3,07	44	6,98	100	11,17	160	18,15	260
1 500	1 000	1,57	15	4,19	40	9,42	90	15,71	150	23,04	220
2 000	1333,33	1,95	14	5,31	38	11,87	85	19,55	140	27,92	200
3 000	2 000	2,51	12	6,91	33	15,29	73	25,13	120	35,60	170
Rapport de transmission 2 :1				_							
50	25	0,05	18	0,13	50	0,34	130	0,52	200	0,84	320
250	125	0,24	18	0,64	49	1,64	125	2,49	190	4,06	310
500	250	0,47	18	1,26	48	3,14	120	4,71	180	7,85	300
1 000	500	0,89	17	2,36	45	5,76	110	8,90	170	14,14	270
1 500	750	1,26	16	3,38	43	7,85	100	12,57	160	19,63	250
2 000	1 000	1,57	15	4,19	40	9,42	90	15,71	150	23,04	220
3 000	1 500	2,2	14	5,81	37	12,88	82	20,42	130	28,27	180
		,		- , -		,		- 7		- 1	
Rapport de transmission 3 :1 50	1/ /7	0,03	16	0,07	40	0,17	95	0.21	175	0,51	290
	16,67							0,31			
250	83,33	0,13	15	0,34	39	0,77	88	1,48	170	2,27	260
500	166,67	0,26	15	0,66	38	1,47	84	2,79	160	4,19	240
1 000	333,33	0,49	14	1,29	37	2,62	75	5,24	150	6,98	200
1 500	500	0,68	13	1,83	35	3,51	67	6,81	130	9,42	180
2 000	666,67	0,84	12	2,23	32	4,54	65	8,38	120	11,87	170
3 000	1 000	1,15	11	2,93	28	5,45	52	10,47	100	15,71	150
Rapport de transmission 4 :1											
50	12,5	-	-	0,05	38	0,12	95	0,23	175	0,37	280
250	62,5	-	-	0,25	38	0,60	92	1,11	170	1,77	270
500	125	-	-	0,48	37	1,15	88	2,16	165	3,14	240
1 000	250	-	-	0,92	35	2,09	80	3,93	150	5,50	210
1 500	375	-	-	1,34	34	2,91	74	5,50	140	7,46	190
2 000	500	-	-	1,62	31	3,56	68	6,81	130	9,16	175
3 000	750	-	-	2,28	29	4,71	60	7,85	100	12,57	160
Rapport de transmission 5 :1											
50	10	-		0,04	20	0.10	95	0.10	175	0.27	260
250	50	-	-	0,04	38 37	0,10 0,48	95	0,18	175	0,27 1,31	250
500	100	-	-	0,37	35	0,92	88	1,68	160	2,41	230
1 000	200	-	-	0,69	33	1,68	80	2,93	140	4,19	200
1 500	300	-	-	0,94	30	2,29	73	3,77	120	5,81	185
2 000	400	-	-	1,17	28	2,85	68	4,61	110	7,54	180
3 000	600	-	-	1,70	27	3,77	60	6,28	100	10,05	160
Rapport de transmission 6 :1											
50	8,33	-	-	0,03	32	0,06	74	-	-	0,18	210
250	41,67	-	-	0,14	31	0,31	70	-	-	0,87	200
500	83,33	-	-	0,26	30	0,60	69	-	-	1,66	190
1 000	166,67	-	-	0,51	29	1,19	68	-	-	3,23	185
1 500	250	-	-	0,73	28	1,68	64	-	-	4,45	170
	333,33	_	_	0,94	27	2,09	60	-	_	5,58	160
2 000	333,33										

4.2 Conception


4.2.3.3 Série KV 90-KV 550

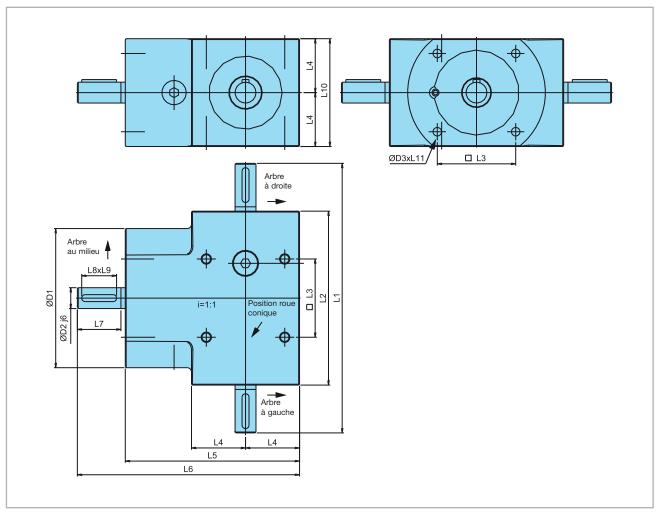
Vitesse d'entrée	Vitesse de sortie	KV	90	KV	120	KV	260	KV	550
n ₁ [min ⁻¹]	n ₂ [min ⁻¹]	P ₁ [kW]	T ₂ [Nm]						
apport de transmission 1 :1									
50	50	6,54	1250	9,16	1750	23,04	4400	40,84	7800
250	250	24,87	950	36,65	1400	89,01	3400	154,45	5900
500	500	41,88	800	62,83	1200	146,60	2800	261,78	5000
1 000	1 000	67,02	640	94,24	900	198,95	1900	418,85	4000
1 500	1 500	81,68	520	116,23	740	251,31	1600	549,74	3400
2 000	2 000	92,15	440	127,75	610	-		-	-
3 000	3 000	100,52	320	138,22	440	-	-	-	-
apport de transmission 1,5 :1									
50	33,33	4,54	1300	6,28	1800	15,71	4500	27,92	8000
250	166,67	19,20	1100	26,18	1 500	64,57	3700	113,44	6500
500	333,33	31,41	900	45,38	1300	108,20	3100	188,48	5400
1 000	666,67	52,36	750	76,79	1100	181,50	2600	328,10	4700
1 500	1 000	67,02	640	94,24	900	198,95	1900	418,85	4000
2 000	1333,33	79,58	570	110,30	790	237,35	1700	516,58	3700
3 000	2 000	92,15	440	127,75	610	-	-	-	-
Rapport de transmission 2 :1									
50	25	3,40	1300	4,71	1800	12,04	4600	21,47	8200
250	125	15,71	1200	20,94	1600	51,05	3900	90,31	6900
500	250	24,87	950	36,65	1400	89,01	3400	154,45	5900
1 000	500	41,88	800	62,83	1200	146,60	2800	261,78	5000
1 500	750	54,97	700	78,53	1 000	188,48	2400	353,40	4500
2 000	1 000	67,02	640	94,24	900	198,95	1900	418,85	4000
3 000	1 500	81,68	520	116,23	740	251,31	1600	549,74	3500
Rapport de transmission 3 :1									
50	16,67	1,52	870	2,97	1700	7,33	4200	14,83	8200
250	83,33	7,07	810			32,29			7300
500				12,22	1400		3700	63,70	
	166,67	13,09	750	21,82	1250	55,85	3200	109,95	6300
1 000	333,33	21,64	620	34,21	980	90,75	2600	184,99	5300
1 500	500	27,25	530	43,98	840	115,18	2200	240,84	4600
2 000	666,67	33,51	480	53,05	760	132,64	1900	293,19	4200
3 000	1 000	40,84	390	62,83	600	178,01	1700	366,49	3500
Rapport de transmission 4 :1									
50	12,5	1,26	960	2,09	1600	3,93	3 000	11,13	8500
250	62,5	5,56	850	9,82	1 500	18,32	2800	51,05	7800
500	125	10,21	780	17,67	1350	32,72	2500	91,62	7000
1 000	250	17,28	660	30,10	1150	54,97	2100	159,69	6100
1 500	375	23,17	590	38,48	980	74,61	1900	223,82	5700
2 000	500	27,23	520	45,55	870	94,24	1800	261,78	5000
3 000	750	33,77	430	54,97	700	125,65	1600	337,70	4300
Rapport de transmission 5 :1									
50	10	1,02	970	1,57	1 500	3,35	3200	7,54	7200
250	50	4,71	900	7,33	1400	15,18	2900	33,51	6400
500	100								
		8,48	810	13,61	1300	25,13	2400	60,73	5800
1 000	200	14,66	700	23,04	1100	39,79	1900	104,71	5800
1 500	300	19,48	620	29,84	950	53,40	1700	135,08	4300
2 000	400	23,46	560	35,60	850	67,02	1600	159,16	3800
3 000	600	31,41	500	46,49	740	81,68	1300	201,05	3200
Rapport de transmission 6 :1									
50	8,33	0,53	610	0,87	1 000	1,83	2100	5,41	6200
250	41,67	2,62	600	4,28	980	8,73	2 000	25,31	5800
500	83,33	5,06	580	7,68	880	15,71	1800	45,38	5200
1 000	166,67	9,25	530	13,61	780	29,67	1700	80,28	4600
1 500	250	12,57	480	17,80	680	39,27	1 500	104,71	4000
2 000	333,33	15,01	430	20,94	600	48,87	1400	132,64	3800

4.3 Schémas cotés

4.3.1 Série K...13

Seules les portées de cote les plus récentes ont force d'engagement

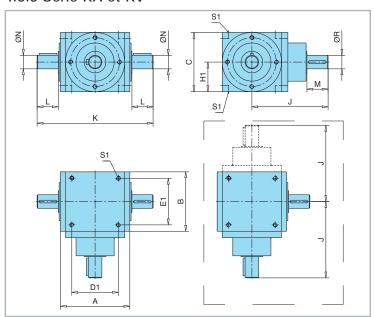
Taille	K 0,5.13	K 5.13	K 11.13	K 25.13		KV60).13	
Rapport de transm.	1:1/2:1/3:1	1:1/2:1/3:1	1:1/2:1/3:1	1:1/2:1/3:1	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1
А	105	135	178	230	300	300	300	300
В	64	110	140	230	210	210	210	210
С	64	105	123	152	202	202	202	202
D	84,5	110	146	195	270	270	270	270
E	50	85	106	195	170	170	170	170
ØF	6,5	9	9	11	13	13	13	13
Н	32	52,5	61,5	70	102	102	102	102
J	64	110	135	223	273	261	261	248
K	114	170	232	356	406	406	406	406
L	15,5	28	40	80	80	80	80	80
М	15,5	30	40	80	80	68	68	55
ØN	10 _{j6}	16 _{j5}	24 _{k6}	30 _{k6}	42 _{j6}	42 _{j6}	42 _{j6}	42 _{j6}
0	8	12	14	15	15	15	15	15
ØR	10 _{i6}	16 _{i5}	24 _{k6}	30 _{k6}	42 _{i6}	35 _{i6}	35 _{i6}	28 _{i6}


Clavettes et rainures de calvettes : DIN 6885, page 1

4.3 Schémas cotés

4.3.2 Série NORMA

Seules les portées de cote les plus récentes ont force d'engagement


Taille	NM0	NM1	NM2	NM3
Rapport de transm.	1:1	1:1	1:1	1 :1
ØD1	65	80	90	100
ØD2	12	12	14	18
ØD3	M5	M6	M6	M8
L1	130	155	180	220
L2	85	100	115	130
L3	37	45	55	60
L4	25	31	37,5	41
L5	85	100	115	130
L6	107,5	127,5	147,5	175
L7	20	25	30	42,5
L8	4	4	5	6
L9	14	20	25	36
L10	50	62	75	82
L11	10	12	12	12

Pas de forces radiales possibles au niveau de l'arbre de transmission «Arbre au milieu» Remplissage standard d'huile

4.3 Schémas cotés

4.3.3 Série KA et KV

Seules les portées de cote les plus récentes ont force d'engagement

Taille		KA 1				KA 5		
Rapport de transm.	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1
А	84	84	-	-	110	110	110	110
В	65	65	-	-	90	90	90	90
С	65	65	-	-	90	90	90	90
D1 ^{±0,2}	45	45	-	-	70	70	70	70
E1 ^{±0,2}	45	45	-	-	70	70	70	70
H1	32,5	32,5	-	-	45	45	45	45
J	100	100	-	-	122	122	132	132
K	144	144	-	-	190	190	190	190
L	26	26	-	-	35	35	35	35
М	26	26	-	-	35	35	35	35
ØN _{j6}	12	12	-	-	18	18	18	18
ØR _{j6}	12	12	-	-	18	12	12	12
S1	M 6x12	M 6x12	-	-	M 8x14	M 8x14	M 8x14	M 8x14

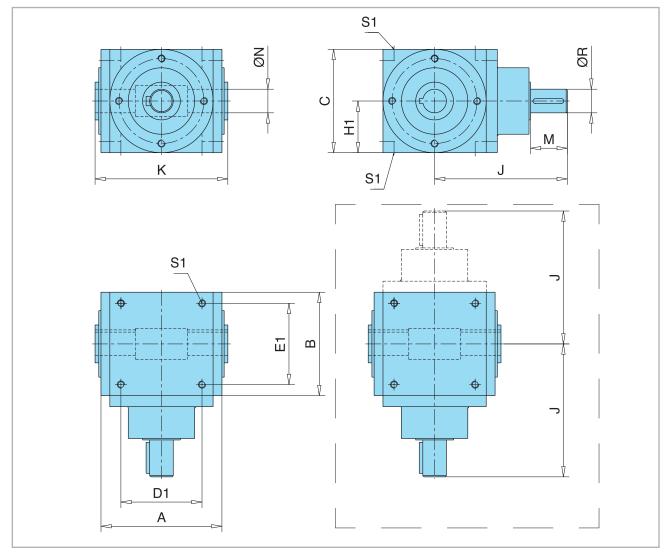
Taille		KA 9				KA 18		
Rapport de transm.	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1
А	144	144	144	144	164	164	164	164
В	120	120	120	120	140	140	140	140
С	120	120	120	120	140	140	140	140
D1 ^{±0,2}	100	100	100	100	110	110	110	110
E1 ^{±0,2}	100	100	100	100	110	110	110	110
H1	60	60	60	60	70	70	70	70
J	162	162	172	162	180	180	195	195
K	244	244	244	244	274	274	274	274
L	45	45	45	45	50	50	50	50
M	45	45	45	35	50	50	50	50
ØN _{j6}	25	25	25	25	32	32	32	32
ØR _{j6}	25	20	20	15	32	28	24	24
S1	M 10x16	M 10x16	M 10x16	M 10x16	M 10x20	M 10x20	M 10x20	M 10x20

Ajustements des arbres : j6; Centrage de l'arbre : DIN 332 page 2; Clavettes et rainures de clavettes : DIN 6885 page 1

4.3 Schémas cotés

Taille		KA 35				KV 9	0	
Rapport de transm.	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1
А	190	190	190	190	264	264	264	264
В	160	160	160	160	230	230	230	230
С	160	160	160	160	230	230	230	230
D1 ^{±0,2}	120	120	120	120	180	180	180	180
E1 ^{±0,2}	120	120	120	120	180	180	180	180
H1	80	80	80	80	115	115	115	115
J	212	212	232	232	305	310	310	300
K	320	320	320	320	460	460	460	460
L	60	60	60	60	90	90	90	90
M	60	60	60	60	90	80	80	70
ØN _{j6}	35	35	35	35	55	55	55	55
ØR _{j6}	35	28	24	24	55	40	40	35
S1	M 12x24	M 12x24	M 12x24	M 12x24	M 16x32	M 16x32	M 16x32	M 16x32

Taille		KV 120)			KV 2	260	
Rapport de transm.	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1 / 6 :1
A	300	300	300	300	402	402	402	402
В	260	260	260	260	350	350	350	350
С	260	260	260	260	350	350	350	350
D1 ^{±0,2}	220	220	220	220	285	285	285	285
E1 ^{±0,2}	220	220	220	220	285	285	285	285
H1	130	130	130	130	175	175	175	175
J	380	360	360	360	570	540	540	510
K	570	570	570	570	820	820	820	820
L	110	110	110	110	170	170	170	170
M	110	90	90	90	170	140	140	110
ØN _{j6}	60	60	60	60	80	80	80	80
ØR _{j6}	60	50	50	45	80	65	65	55
S1	M 16x32	M 16x32	M 16x32	M 16x32	M 20x40	M 20x40	M 20x40	M 20x40


Taille			KV 550		
Rapport de transm.	1 :1 / 1,5 :1 / 2 :1	3 :1	4 :1	5 :1	6 :1
А	490	490	490	490	490
В	450	450	450	450	450
С	450	450	450	450	450
D1 ^{±0,2}	360	360	360	360	360
E1 ^{±0,2}	360	360	360	360	360
H1	225	225	225	225	225
J	600	570	570	530	540
K	940	940	940	940	940
L	150	150	150	150	150
M	150	120	120	110	110
ØN _{j6}	90	90	90	90	90
ØR _{j6}	90	75	75	60	60
S1	M 20x40	M 20x40	M 20x40	M 20x40	M 20x40

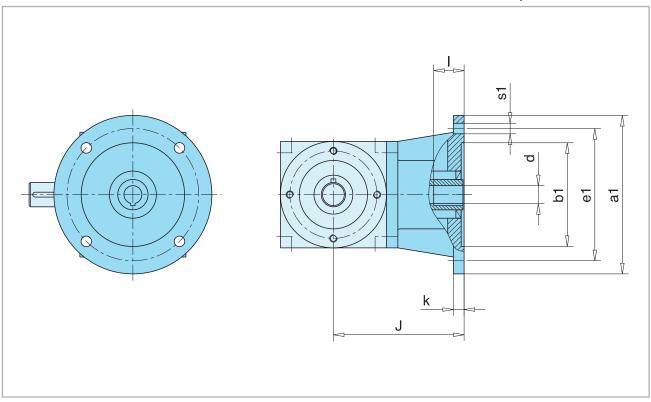
Ajustements des arbres : j6; Centrage de l'arbre : DIN 332 page 2; Clavettes et rainures de clavettes : DIN 6885

4.3 Schémas cotés

4.3.4 Série KA...H et KV...H avec arbre creux côté réduction

Seules les portées de cote les plus récentes ont force d'engagement

Taille	KA 1 H	KA 5 H	KA 9 H	KA 18 H	KA 35 H	KV 90 H	KV 120 H	KV 260 H	KV 550 H
А	84	110	144	164	190	280	300	402	490
В	65	90	120	140	160	230	260	350	450
С	65	90	120	140	160	230	260	350	450
D1 ^{±0,2}	45	70	100	110	120	180	220	285	360
E1 ^{±0,2}	45	70	100	110	120	180	220	285	360
H1	32,5	45	60	70	80	115	130	175	225
J			En fond	tion du rapport	de transmission,	dim. voir chapit	re 4.3.2		
K	92	124	160	174	206	300	350	480	640
M			En fond	tion du rapport	de transmission,	dim. voir chapit	re 4.3.2		
ØN ^{H7}	12	18	25	32	35	55	60	80	100
ØR _{j6}			En fond	tion du rapport	de transmission,	dim. voir chapit	re 4.3.2		
S1	M 6x12	M 8x16	M 10x18	M 10x18	M 12x24	M 16x32	M 16x32	M 20x40	M 20x40

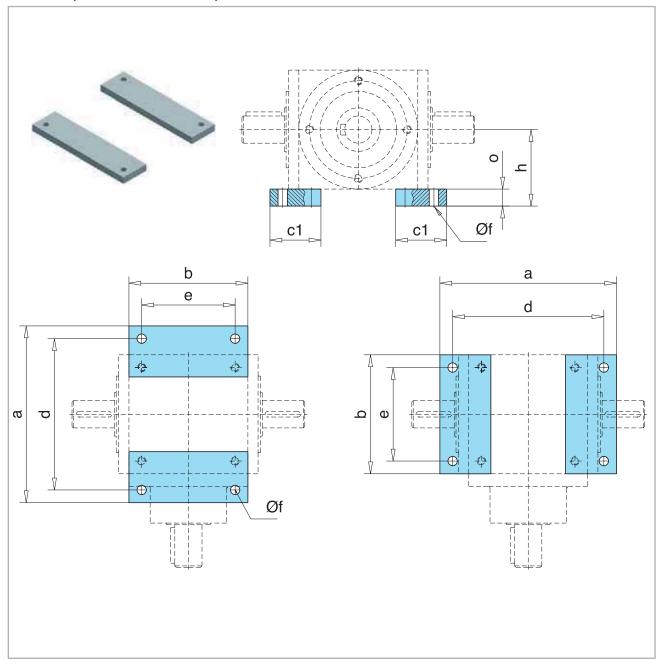

Centrage de l'arbre : DIN 332 page 2, Clavettes et rainures de clavettes : DIN 6885 page 1

4.3 Schémas cotés

4.3.5 Série KA...FH et KV...FH avec arbre creux côté entraînement et flasque de moteur

Seules les portées de cote les plus récentes ont force d'engagement

Taille	Type de moteur		Flasque IEC		Arbre creux		Dim. flasque	
		Øa1	Øb1	Øe1	Ød x I	J	k	s1
KA 1 FH	63	120	80	100	Ø11x23	90	10	4xØ7
NA IIII	71	105	70	85	Ø14x30	90	10	4xØ7
	71	140	95	115	Ø14X30			4xØ9
KA 5 FH	80	120	80	100		110	12	4xØ7
	80	160	110	130	Ø19x40			4xØ9
	80	160	110	130				4xØ9
144 0 511		140	95	115		135	15	4xØ9
KA 9 FH	90 L / S	160	110	130		135	15	4xØ9
		200	130	165	Ø24x50		15 15 18	4xØ11
	90 L / S	160	110	130				4xØ9
KA 18 FH		200	130	165		170	15	4xØ11
	100 L	250	180	215	Ø28x60			4xØ14
	90 L / S	200	130	165	Ø24x50			4xØ11
KA 35 FH	100 L				Ø28x60	190	18	
	112 M	250	180	215	W28X60			4xØ14
	132 S / M	300	230	265	Ø38x81*	305	18	4xM12
KV 90 FH	160 M / L	350	250	300	Ø42x111*			4xM16
VA AO EH	180 M / L	350	250	300	Ø48x111*	335	24	4xM16
	200 L	400	300	350	Ø55x111*			4xM16
KV 120 FH					sur demande			

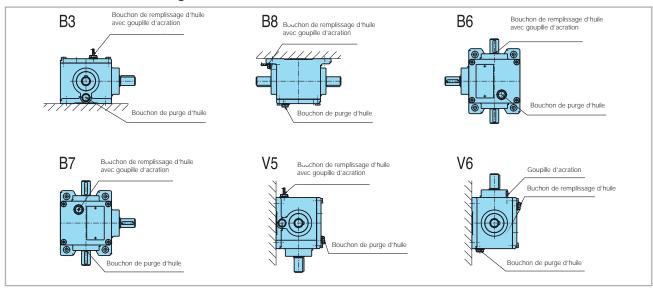

Si certaines dimensions manquent, veuillez vous reporter au type de transmission respectivement, chapitre 4.3.2 ou 4.3.3

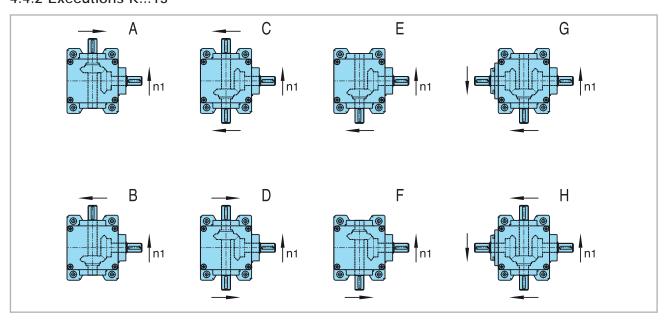
^{*} Montage de differents arbres de moteur est seulement possible avec une clé dynamométrique spéciale

4.3 Schémas cotés

4.3.6 Plaques de fixations AL pour séries KA et KV

Taille	KA1	KA 5	KA 9	KA 18	KA 35	KV 90	KV 120	KV 260	KV 550
а	100	140	190	210	250	340	380	490	590
b -0,5	84	90	120	140	160	230	260	350	450
c1	35	45	55	60	80	100	100	130	140
d ^{±0,2}	95	125	168	190	215	295	335	440	540
е	70	72	100	110	134	190	220	285	360
Øf	6,6	9,0	11	11	14	18	18	22	22
h	44,5	57	75	90	105	145	165	210	255
0	12	12	15	20	25	30	35	35	30




4.4 Indications à fournir lors d'une commande K....13

Pour une exécution répondant exactement à vos besoins, veuillez nous indiquer le modèle du renvoi d'angle et le rapport de transmission, ainsi que la position de montage et l'exécution de celui-ci.

4.4.1 Positions de montage K...13

4.4.2 Exécutions K...13

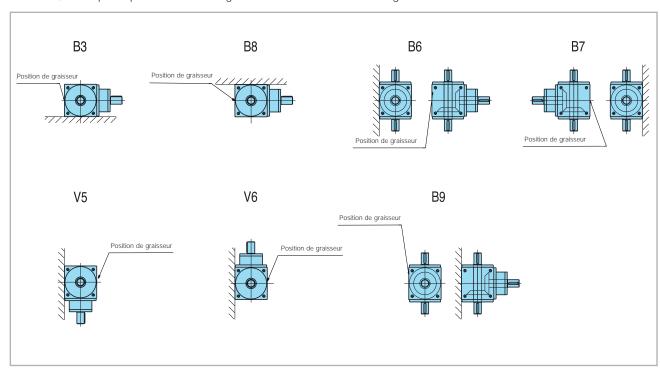
4.4.3 Code de commande K...13

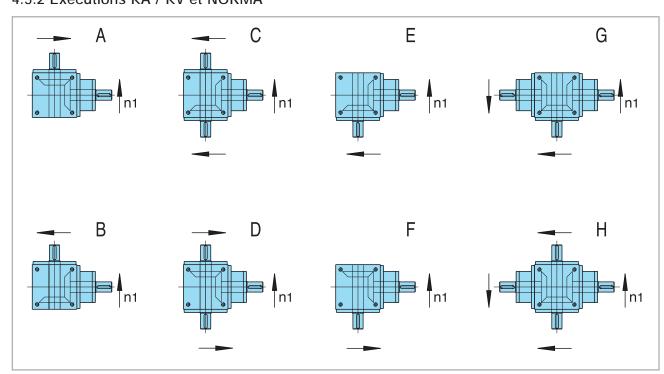
Désignation de la commande 1 - 2 - 3 - 4 -

Knnn.13-n :n-n-nn-nnnn

Exemple: K25.13-2:1-C-B6-1 000

- 1. Désignation du produit/Dim. :par ex. K25.13,
- 2. Rapport de transm. : 1 :1; 2 :1; 3 :1 (pour KV 60.13 : 1 :1; 1,5 :1; 2 :1; 3 :1; 4 :1; 5;1)
- 3. Exécution : A; B; C; D; E; F; G; H voir exécutions K.13
- 4. Position de montage: B3; B8; B6; B7; V5; V6
- 5. Nombre de tours d'entraı̂nement n_1


115


4.5 Indications à fournir lors d'une commande KA/KV et NORMA

4.5.1 Positions de montage KA / KV et NORMA

Pour une exécution répondant exactement à vos besoins, veuillez nous indiquer le type d'entraînement et le rapport de réduction, ainsi que la position de montage et l'exécution du renvoi d'angle.

4.5.2 Exécutions KA / KV et NORMA

Exécutions G et H pour série KA et KV.

4.5 Indications à fournir lors d'une commande KA/KV et NORMA

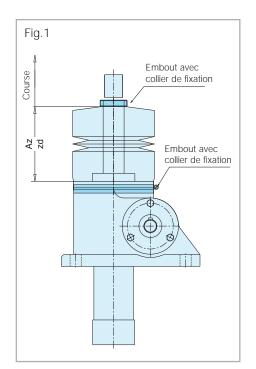
4.5.3 Code de commande NORMA

Désignation de la commande

Exemple: NM2-1:1-E-L-0-B3-1 500

- 1. Désignation du produit/taille : par ex NMO, NM2
- 2. Rapport de transmission : 1 :1
- 3. Exécution : A, B C, D, E, F
- 4. Exécution de l'arbre
 - L = arbre plein,
- 5. Classe de tolérance : 0 = jeu primitif 15 minutes d'angle au maximum
- 6. Position de montage : B3; B8; B6; B7; V5; V6; B9
- 7. Vitesse de réduction n_2

4.5.4 Code de commande KA et KV


Désignation de la commande

Exemple: KV260-3:1-C-0-B3-500

- 1. Désignation du produit/taille. : par ex KV 120, KA 9
- 2. Rapport de transmission: 1:1; 1,5:1; 2:1; 3:1; 4:1; 5:1; 6:1
- 3. Exécution : A; B; C; D; E; F; G; H
- 4. Exécution de l'arbre
 - L = arbre plein,
 - H = arbre creux côté réduction;
 - FH = Flasque avec arbre creux côté transmission
- 5. Classe de tolérance : 0 = jeu primitif 15 minutes d'angle au maximum
- 6. Position de montage: B3; B8; B6; B7; V5; V6; B9
- 7. Vitesse de réduction n_2
- 8. Pattes de fixations à visser : Al

5.1 Soufflets

Il convient de protéger les vérins à vis sans fin Pfaff-Silberblau contre les risques d'encrassement et d'endommagement par l'intermédiaire de souf-flets, réalisables dans différents matériaux et différentes exécutions.

5.1.1 Généralités

L'exécution standard des soufflets est fabriquée dans le matériau PN-100 ou PN-200 et fixée des deux côtés à l'aide de colliers galvanisés (Fig. 1). Sur demande, des colliers de fixation anticorrosion (V2A) sont aussi livrables.

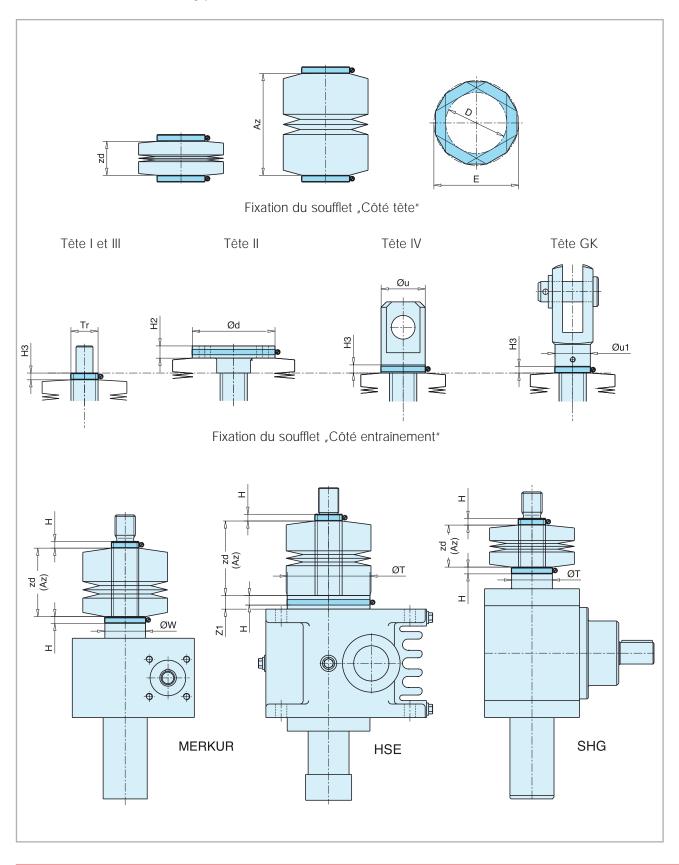
Pour les dimensions du soufflet déployé Az > 1 000 mm, les soufflets sont équipés de dispositifs d'arrêt pour éviter que leurs différents plis soient allongés excessivement.

Lorsque la position de montage est horizontale ou inclinée, il convient d'équiper les soufflets de bagues d'appui à partir d'une longueur de course de 400 mm, pour éviter un accrochage dans les pas de filet. La position de montage verticale nécessite une bague d'appui tous les 1 000 mm.

Codification:

PN-nnn-nn/nn-Ønn/Ønn-nnxnn/nnxnn-n-n-nnnnnxnn

1 2 3 4 5 6


- 1 Matériau
- 2 zd / Az (zd = longueur minimale, Az = longueur maximale)
- 3 Ø intérieur / Ø extérieur
- 4 Fourreau 1 / fourreau 2
- 5 Dispositif anti-extraction 0/1 (oui/non)
- 6 Nombre de bagues d'appui
- 7 Taille tige filetée Tr (DxP) / Ku (DxP)

Matériau	Exécution	Plage de température°C	étanche à la poussière	étanche à l'eau	résistant à l'huile	résistant aux agents chimiques	résistant aux étincelles	zd/course
PN-100*	Plis polygonaux	-15° à 70°	I	I	I 2	-	-	0,12
PN-200*	Plis polygonaux	-15° à 100°	1	l I	ı	1	-	0,15
PN-300	Couture ronde	-15° à 100°	1	I	I	-	-	0,20
PN-CSM- film en caoutchouc	rond	-28° à 110°	I	I	ı	-	-	sur demande
PN-CR- tissu caoutchouc	rond	-38° à 100°	I	I	I	I 1	-	sur demande
PN-ALU- fibre de verre	Couture ronde	-20° à 200°	I	-	-	-	I	sur demande

^{*} Standard I sous réserve I résistant I 1 uniquement si revêtu de Téflon I 2 en cas d'huile synth., uniquement avec revêtement intérieur

5.2 Schémas cotés type 1

5.2 Schémas cotés type 1

5.2.1 Série MERKUR

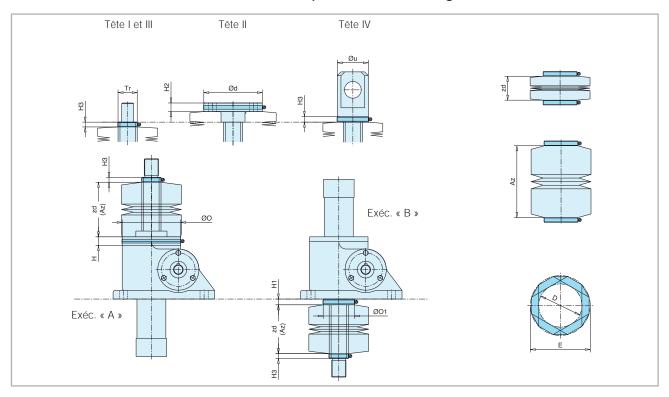
Taille		MO	M1	M2	M3	M4	M5	M6	M7	M8
Attache au	ı carter :									
Carter	ØW	26	30	39	46	60	85	120	145	170
	Н	12	12	12	12	12	12	15	15	15
Tête de vé	rin									
Tête II	Ød	50	65	80	90	110	150	220	260	310
	H2	12	12	12	12	15	20	30	30	30
Tête I/III	*ØTr	14	18	20	30	40	60	70	100	120
Tête IV	Øu	25	30	40	45	60	85	120	160	170
	Н3	12	12	12	12	12	12	15	15	15
Tête GK	Øu1	14	20	25	34	52	60	-	-	-
	Н3	12	12	12	12	12	12	-	-	-
zd _{min} minir	num									
Tête II		7	12	16	16	19	37	42	52	102
Tête I/III		0	0	0	0	0	0	0	0	0
Tête IV-GK		3	4	7	5	4	7	12	12	22
Diamètre i	ntérieur et	extérieur du s	oufflet (matéri	au PN 100 et I	PN 200)					
Tête II	D	63	63	100	100	120	150	220	260	310
	E	105	105	140	140	180	210	280	320	370
Tête	D	38	38	45	63	100	100	120	200	200
I-III-IV-GK	E	75	75	85	105	140	140	180	260	260

Dimensions pour broches Ku sur demande * pour attache vis à billes Ku Tête I-III = Ø Ku

5.2.2 Série HSE et SHG

Taille		32	36.1	50.1	63.1	80.1	100.1	125.1	140	200.1
Attache au	carter :		00	00.1	0011	00.1		12011	1.0	200
Carter	ØT	62	72	92	122	152	182	222		352
	Н	15	16	18	20	25	25	25		25
Tête de vé	rin									
Tête II	Ød	65	72	92	122	150	182	222		352
	H2	12	12	12	18	20	20	25		30
Tête I/III	ØTr	18	24	40	50	60	70	100		160
Tête IV	Øu	30	40	50	65	90	110	140		220
	НЗ	12	12	12	12	15	15	20		20
zd _{min} minin	num pour e	kécutio	n H (vo	ir chap	. 3.7)					
Tête II		31	33	38	42	50	50	70	sur	20
Tête I / III		8	8	10	10	10	15	15	demande	20
Tête IV		20	20	20	20	20	20	20		20
zd _{min} minin	num pour e	kécutio	n F (voi	r chap.	3.7)					
Tête II		39	41	46	51	64	69	89		49
Tête I / III		16	16	18	19	19	24	24		29
Tête IV		28	28	28	29	34	39	39		49
Diamètre in	ntérieur et e	xtérieu	r du so	ufflet						
(matériau F	PN 100 et P	N 200)								
Tête II	D	63	63	100	120	150	185	260		300
	E	105	105	140	180	210	245	320		360
Tête	D	38	45	63	75	110	130	150		245
I-III-IV	Е	75	85	105	125	150	185	210		295

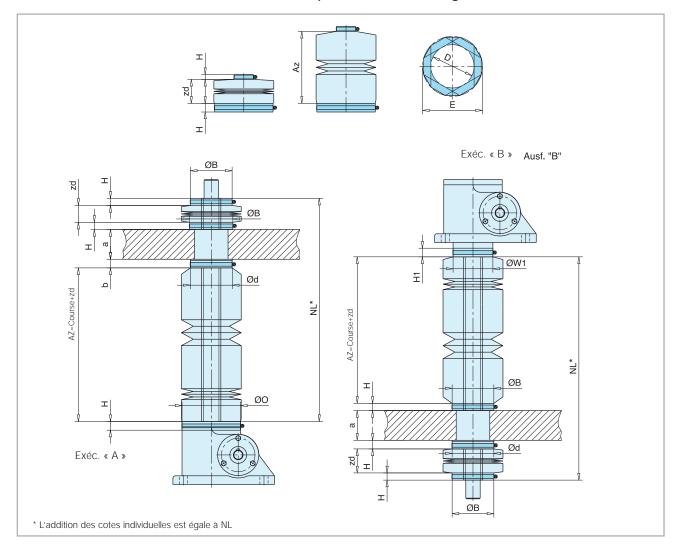
() Valeurs entre parenthèses pour l'exécution avec vis à billes Ku


Taille		G15	G25	G50	G90
Attache au	carter :				
Carter	ØT	39	100	60	90
	Н	12	12	15	15
Tête de véi	rin				
Tête II	Ød	90	98	110	170
	H2	12	12	15	25
Tête I/III	ØTr	24	35	40	60
	(ØKu)	(25)	-	(40/32)	(63)
Tête IV-	Øu	-	50	65	80
Tête GK	Øu1	34	-	52	-
	НЗ	12	12	15	15
zd _{min} minim	num pour e	exécution	H (voir o	hap. 3.8.	1.2)
Tête II		-	33	-	-
Tête I / II		-	3	-	-
Tête IV		-	15	-	-
zd _{min} minim	num pou	ır exécuti	on F		
Tête II		16	43	19	32
Tête I / II		0	13	0	0
Tête IV		-	25	4	7
Tête GK		5	-	4	-
Diamètre in	ntérieur et	extérieur	du souff	let	
(matériau F	N 100 et F	PN 200)			
Tête II	D	100	120	120	185
	E	140	180	180	245
Tête	D	63	75	110	110
I-III-IV-GK	Е	105	125	150	150

⁽⁾ Valeurs entre parenthèses pour l'exécution avec vis à billes Ku

5.2 Schémas cotés type 1

5.2.3 Série SHE, Exécution A et B, toutes positions de montage

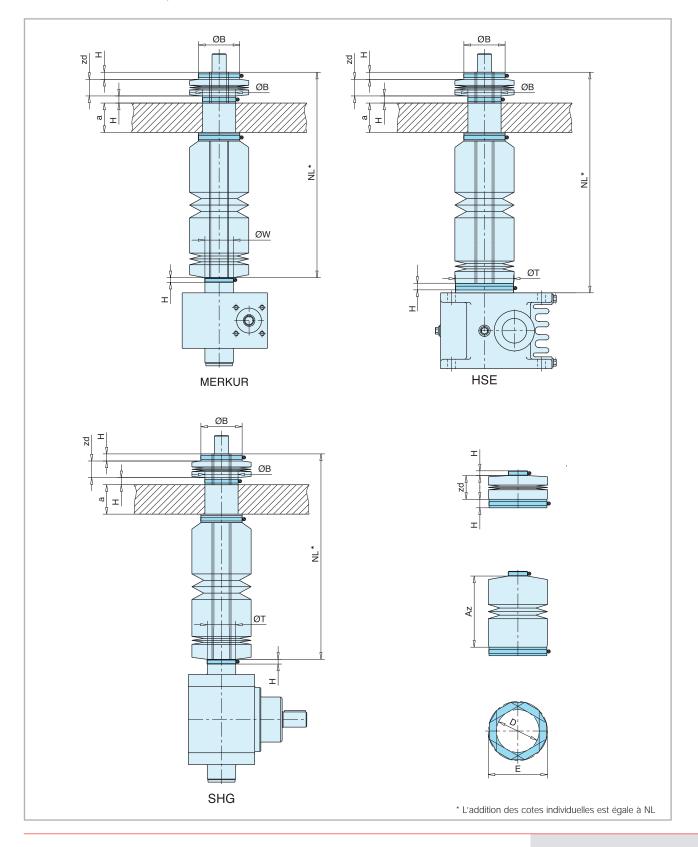

SHE		0,5	1.1	2	3.1	5.1	(10 ¹)	15.1	20.1	25	35	50.1	75	100.1	150	200.1*
Attache au	carter Exé	cution A														
Carter	ØO	65	88	98	98	122	150	150	185	205	260	170	250	240	300	
	Н			12					1	5				20		
Attache au	carter Exé	cution B														
Carter	ØO1	36	52	48	48	65	80	80	100	130	150	170	250	240	300	
	H1					1	2					15		20		
Tête de vé	rin															
Tête II	Ød	65	72	98	98	122	150	150	185	205	260	300	200	200	220	
	H2	12	12	12	12	18	20	20	25	25	25	30	30	30	30	
Tête I/III	ØTr	18	24	26	30	40	58	60	70	90	100	120	140	160	190	
Tête IV	Øu	30	40	48	50	65	90	90	110	130	150	170	200	220	260	
	НЗ			12					1	15				20		
zd _{min} minin	num Exécut	ion A														
Tête II		24	33	42	42	45	60	60	66	75	80	70	20	25	30	
Tête I/III		4	8	12	12	11	15	15	11	22	15	10	0	5	10	
Tête IV		20	20	24	24	24	30	30	26	37	30	25	20	25	30	
zd _{min} minin	num Exécut	ion B														
Tête II		12	30	30	30	33	48	48	54	63	68	70	20	20	30	
Tête I/III		0	5	0	0	0	3	3	0	10	3	10	0	0	10	
Tête IV		8	17	12	12	12	18	18	14	25	18	25	20	20	30	
Dimension	s du souffle	t (matéri	au PN 10	00 et PN	200)											
Tête II	D	63	75	100	100	120	150	150	185	200	260	300	300	300	310	
	E	105	125	140	140	180	210	210	245	260	320	360	360	360	370	
Tête I-III-IV	D	38	45	63	63	75	110	110	130	150	150	200	245	245	280	
	Е	75	85	105	105	125	150	150	185	210	210	260	295	295	340	

¹⁾ Lors d'une nouvelle commande, utiliser la taille 15.1; la taille 10 est uniquement encore disponible sous forme d'exécution spéciale

5.3 Schémas cotés type 2

5.3.1 Série SHE, Exécution A et B, toutes positions de montage

SHE	0,5	1.1	2	3.1	5.1	10 ¹⁾	15.1	20.1	25	35	50.1	75	100	150	200.1
Dim. de raccordement	: Carter	Exécution	on A												
ØO	65	88	98	98	122	150	150	185	205	260	210		240	300	
Н	12	12	12	12	12	15	15	15	15	15	20		20	20	
Dim. de raccordement	: Carter	Exécution	on B												
ØW1	45	52	60	68	83	110	110	140	160	180	210		280	340	
H1	12	12	12	12	12	15	15	15	15	15	20		20	20	
Raccord de l'écrou mo	obile											sur			sur
Ød	50	65	76	80	87	110	110	120	155	190	225	demande	260	300	demande
b	12	12	12	12	12	15	15	15	15	15	20		20	20	
Raccord de l'installation	on														
ØB	50	65	80	80	87	110	110	120	155	190	225		260	300	
Н	12	15	15	15	15	15	15	15	15	15	25		20	20	
Dimensions du souffle	t (matéri	au PN 10	00 et PN	200)											
ØD	38	38	63	63	75	110	110	130	150	150	200		245	280	
ØE	75	75	105	105	125	150	150	185	210	210	260		295	360	


¹⁾ Lors d'une nouvelle commande, utiliser la taille 15.1; la taille 10 est uniquement encore disponible sous forme d'exécution spéciale

5.3 Schémas cotés type 2

5.3.2 Série MERKUR, HSE et SHG

5.3 Schémas cotés type 2

5.3.2 Série MERKUR, HSE et SHG

Série MERKUR

Taille	M0	M1	M2	M3	M4	M5	M6	M7	M8
Dim. de raccorder	ment : Carter								
ØW	26	30	39	46	60	85	120	145	170
Н	12	12	12	12	12	12	15	15	15
Raccordement à	l'écrou mobil	e							
Ød	50	50	65	80	87	110	155	190	225
b	12	12	12	15	18	25	25	25	25
Raccordement à I	'installation								
ØB	50	50	65	80	87	110	155	190	225
Н	12	12	15	15	15	15	25	25	25
Dimensions du so	ufflet (matéria	au PN 100 et	PN 200)						
D	38	38	38	63	75	110	150	150	200
E	75	75	75	105	125	150	210	210	260

5

Série HSE

Taille	32	36.1	50.1	63.1	80.1	100.1	125.1	140	200.1
Dim. de raccorder	ment : Carter								
ØT	62	72	92	122	152	182	222		352
Н	15	16	18	20	25	25	25		25
Raccordement à l	'écrou mobile								
Øy	50	65	87	105	110	120	190		260
Н	12	15	18	18	15	15	15	sur	25
Raccordement à l	'installation							demande	
ØB	50	65	87	105	110	120	190		260
Н	12	15	15	15	15	15	15		25
Dimensions du so	ufflet (matéria	au PN 100 et	PN 200)						
D	38	38	75	110	110	130	150		245
E	75	75	125	150	150	185	210		295

Série SHG

Taille	G15	G25	G50	G90
Dim. de raccorde	ement : Cart	er		
ØT	39	100	60	90
Н	12	12	15	15
Raccordement à	l'écrou mob	oile		
Ød	65	87	87	120
b	12	15	15	15
Raccordement à	l'installatior	ำ		
ØB	65	87	87	120
Н	12	15	15	15
Dimensions du s	oufflet (mate	ériau PN 100	et PN 200)	
D	63	75	75	130
E	105	125	125	185

5.4 Protection spirales acier FS

5.4.1 Généralités

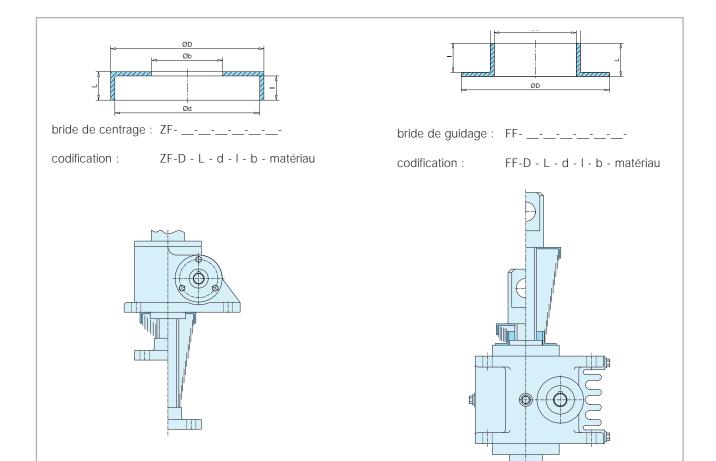
Matériau:

Nous livrons des spirales en acier bleu (standard) ou en acier résistant à la corrosion.

Montage:

Toutes les positions de montage sont réalisables (voir fig.)

Remarque:


Les spirales FS sont auto-nettoyantes lorsque la position de montage est verticale (grand diamètre en haut). Cependant, il est conseillé de nettoyer régulièrement la spirale FS et de la traiter avec de l'huile de pulvérisation spéciale.

5.4.2 Dimensionnement

N'hésitez pas à nous consulter en ce qui concerne le dimensionnement approprié des spirales FS ainsi que de la bride de centrage et de guidage requise (ZF – FF), nous vous ferons parvenir les informations nécessaires.

Remarque : VL est nécessaire (voir chap. 5.1.2)

Lorsque les conditions de service sont difficiles (présence de copeaux, d'éclats de soudage, par ex.), il est recommandé d'utiliser des spirales en acier à ressort "FS".

6.1 Accouplements élastiques

Les accouplements élastiques protègent les vérins, les renvois d'angles et les moteurs en amortissant les vibrations et les à-coups.

6.1.1 Série R

Ils compensent également les faibles désalignements angulaires de nature radiale et axiale entre les arbres et sont donc préférables aux liaisons rigides ou aux bridages des arbres.

Caractéristiques techniques

Dim. R		Coup	ole nomin [Nm]	al T _N	Désalignement angulaire maxi	Angle de torsion pour	Décalage axial maxi	Décalage radial maxi	Moments d'inertie	Matériau ²⁾	Poids Exéc	- 3-
		92 ° Shore	95 ° Shore	98 ° Shore	[°]	T _N	[mm]	[mm]	de masse ¹⁾ J [kgm²]		a/a	b/b
14		7	-	12	1,2°	6,4°	1,0	0,17	5,60 x 10 ⁻⁶	Al	0,14	0,14
19/24		10	-	17	1,2°		1,2	0,20	1,03 x 10 ⁻⁶	Al	0,32	0,36
24/28		35	-	60	0,9°	3,2°	1,4	0,22	4,30 x 10 ⁻⁴	ou	0,60	0,72
28/38		95	-	160	0,9°		1,5	0,25	9,80 x 10 ⁻⁴	St	0,97	1,33
38/45		190	-	325	1,0°		1,8	0,28	96,5 x 10 ⁻⁴		2,08	2,46
42/55		265	-	450	1,0°		2,0	0,32	0,35 x 10 ⁻²		3,21	3,93
48/60)	310	-	525	1,1°		2,1	0,36	1,06 x 10 ⁻²	GG	4,41	5,19
55/70)	410	-	685	1,1°	3,2°	2,2	0,38	2,03 x 10 ⁻²	ou	6,64	8,10
65/75		625	940	-	1,2°		2,6	0,42	3,80 x 10 ⁻²	St	10,13	11,65
75/90) -	1280	1920	-	1,2°		3,0	0,48	8,20 x 10 ⁻²		16,03	19,43
90/100) :	2400	3600	-	1,2°		3,4	0,50	23,8 x 10 ⁻²		27,50	31,70

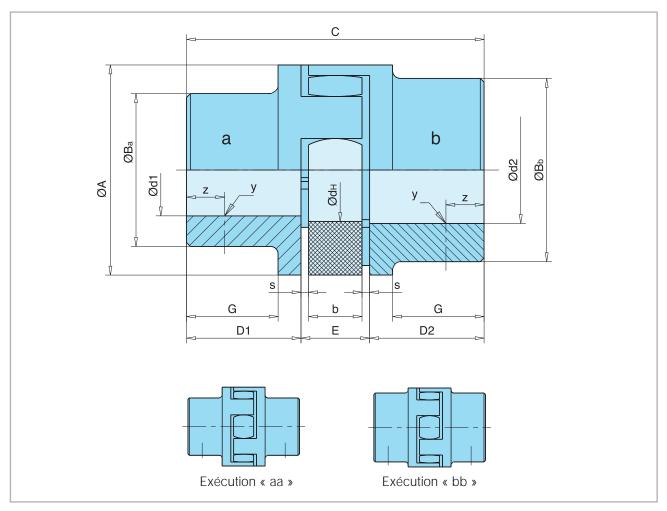
Marquage de la dureté des anneaux élastiques par couleurs :

Shore 92 ° jaune Shore 95/98 ° rouge

 Température
 92 °
 Shore
 -40°C à +90°C

 de service :
 95/98 °
 Shore
 -30°C à +90°C

Dimensionnement : Le couple nominal T_N de l'accouplement doit, en tenant compte du facteur de sélection S⁴), être au


moins égal au couple de l'installation T_{Anl} à transmettre.

 $T_N \geqslant T_{Anl} * S$

6.1 Accouplements élastiques

Schémas cotés

Taille R	Moy Ø		Moy	eu b d2	ØA	ØВа	ØB _b	С	D1 ⁶⁾ et D2 ⁶⁾	Е	S	b	G	Ød _H	у	Z
	min	max	min	max												
14	-	-	6	14	30	30	-	35	11	13	1,5	10	-	10	M4	~5
19/24	6	19	6	24	40	32	40	66	25	16	2	12	20	18	M5	10
24/28	8	24	8	28	55	40	48	78	30	18	2	14	24	27	M5	10
28/38	10	28	10	38	65	48	65	90	35	20	2,5	15	28	30	M8	15
38/45	12	38	38	45	80	66	77	114	45	24	3	18	37	38	M8	15
42/55	14	42	42	55	95	75	94	126	50	26	3	20	40	46	M8	20
48/60	15	48	48	60	105	85	102	140	56	28	3,5	21	45	51	M8	20
55/70	20	55	55	70	120	98	120	160	65	30	4	22	52	60	M10	20
65/75	22	65	65	75	135	115	135	185	75	35	4,5	26	61	68	M10	20
75/90	30	75	75	90	160	135	160	210	85	40	5	30	69	80	M10	25
90/100	40	90	90	100	200	160	180	245	100	45	5,5	34	81	100	M12	25

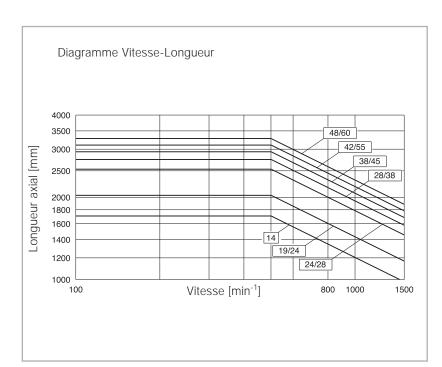
- 1) Valeurs concernant les moyeux b-b et un alésage maxi sans rainure. Pour l'aluminium, la valeur diminue env. du facteur 3.
- Si l'on utilise des arbres en acier traité, il faut choisir un accouplement dans le matériau GG (fonte) ou St (acier). (dim. R19/24 – R48/60 également en acier inox 1.4571)
- 3) Poids pour la fonte grise, réduit de 60 % environ pour l'aluminium
- 4) Coefficient de choc S = 2 en cas d'emploi de moteurs à courant triphasé
- 5) Les rainures des clavettes sont exécutées selon DIN 6885/1
- 6) Longueurs spéciales disponibles sur demande pour les moyeux

6.2 Allonges élastiques

Les allonges élastiques sont utilisées pour accoupler les différents composants de la chaîne cinématique, pour les installations de levage complètes à entraînement central. Elles amortissent les vibrations et les à-coups, compensent les désalignements axiaux, radiaux et angulaires, et sont utilisables sans chaise de palier jusqu'au nombre de tours critique (voir diagramme vitesse - longueurs).

L'emploi de chaises de palier permet de doubler ou même de multiplier la longueur de l'arbre L, cette dernière est cependant limitée à 6 m pour une exécution en une partie.

4 exécutions sont livrables, en fonction de la vitesse et des autres exigences.


6.2.1 Série ZR

Caractéristiques techniques

Dim.	Couple	Vis de	serrage	5	Désalignement			Poids	s [kg]	de palier
ZR	nominal T _N 1)	Désalignement		axial	angulaire maxi					correspondantes
		axial				pour 2 moyeux	pour tube de	pour 2 moyeux	pour tube de	
	[Nm]	T[Nm]	M1	[mm]			1 m		1 m	
14	6	1,3	M3	1,0	0,9°	0,1317x10 ⁻⁴	0,218x10 ⁻⁴	0,1	0,6	-
19/24	24	10	M6	1,2	0,9°	0,8278x10 ⁻⁴	0,932x10 ⁻⁴	0,3	1,3	SN 505
24/28	30	10	M6	1,4	0,9°	8,830x10 ⁻⁴	4,414x10 ⁻⁴	1,5	2,0	SN 507
28/38	70	25	M8	1,5	0,9°	20,05x10 ⁻⁴	7,431x10 ⁻⁴	2,7	3,1	SN 508
38/45	130	49	M10	1,8	1,0°	20,15x10 ⁻⁴	11,59x10 ⁻⁴	3,0	3,6	SN 509
42/55	150	49	M10	2,0	1,0°	47,86x10 ⁻⁴	17,07x10 ⁻⁴	5,0	4,1	SN 510
48/60	245	86	M12	2,1	1,1°	74,68x10 ⁻⁴	24,06x10 ⁻⁴	6,5	4,6	SN 511

¹⁾ Les couples nominaux sont valables pour un service sous charge avec de faibles à-coups; Sous charge avec de forts à-coups, les calculs doivent être réalisés à l'aide du coefficient de service de 1,4.

Plage de vitesse de rotation :

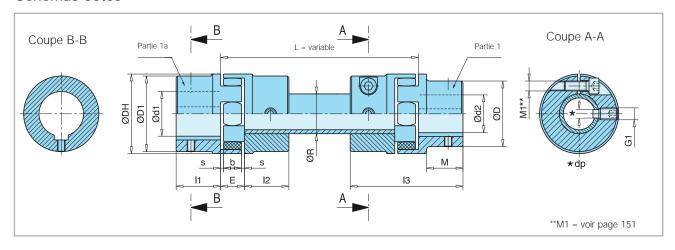
n= 1 500 min⁻¹

Température de service :

– 40° jusqui'à 90°C

(pouvant atteindre temporairement 120°)

Dimensionnement:


Le couple nominal T_N de l'arbre ZR doit, en tenant compte du facteur de service S^1), être au moins égal au couple de l'installation T_{Anl} à transmettre.

$$T_N \geqslant T_{Anl} * S$$

6.2 Allonges élastiques

Schémas cotés

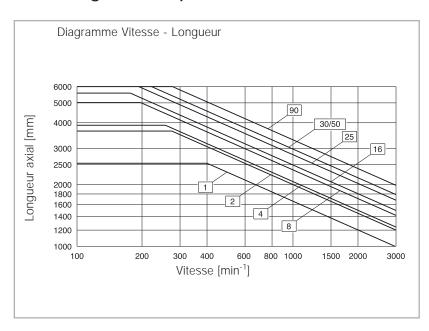
Dim.		Préalésaç	ges ØdH7	2)													
ZR	Pa	rtie 1	Par	tie 1a						l1							
	min Ød2	max Ød2	min Ød1	max Ød1	ØDH	ØD	ØD1	ØdH	12	M	s	b	Е	13	ØR	G1	dp
14	-	-	4	14	30	-	30	10,5	11	-	1,5	10	13	35	14x2	M4	2,5
19/24	6	19	19	24	40	32	41	18	25	20	2	12	16	66	20x3	M6	4
24/28	8	24	24	28	55	40	55	27	30	24	2	14	18	78	30x4	M8	5,5
28/38	10	28	28	38	65	48	65	30	35	28	2,5	15	20	90	35x4	M10	7
38/45	12	38	38	45	80	66	77	38	45	37	3	18	24	114	40x4	M12	8,5
42/55	28	42	42	55	95	75	94	46	50	40	3	20	26	126	45x4	M12	8,5
48/60	28	48	48	60	105	85	102	51	56	45	3,5	21	28	140	50x4	M16	12

²⁾ Rainure selon DIN 6885/1.

6.2.2 Série G / GX / GZ

Caractéristiques techniques

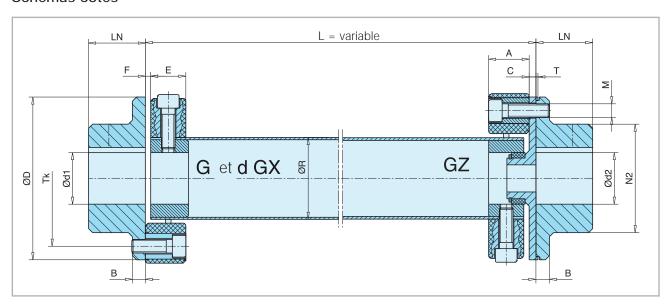
	Série G	Série GX	Série GZ
Plage de vitesse de rotation	n= 750 min ⁻¹	n= 1 500 min ⁻¹	n= 3 000 min ⁻¹
Température de service	 40° jusqu'à 90°C (temporairement jusqu'à 120°C) 	max. 150°C³)	max. 80°C


Dim.	Coup	ole nominal T _N [Nn	n] ¹⁾³⁾	Poid	s [kg]	Désalig	nement	Moments d'inertie	palier
		Série				angulai	re maxi	de masse	correspondant
	G	GX	GZ	pour 2 moyeux	pour tube de 1 m	G+GZ	GX	[kgm²]	
1	10	10	10	1,0	1,1	3°	1°	0,00021	SN 507
2	20	30	20	2,2	1,4	3°	1°	0,00052	SN 509
4	40	60	40	3,4	1,6	3°	1°	0,00076	SN 510
8	80	120	80	7,3	2,2	3°	1°	0,00185	SN 513
16	160	240	160	12,4	2,5	3°	1°	0,00297	SN 516
25	250	370	250	19,1	3,1	3°	1°	0,00538	SN 519
30	400	550	400	31,1	4,8	3°	1°	0,0116	SN 522
50	600	-	600	32,1	4,8	3°	1°	0,0116	SN 522
90	900	-	900	58,7	7,6	3°	1°	0,0283	SN 528

¹⁾ Les couples nominaux sont valables pour un service sous charge avec de faibles à-coups; Sous charge avec de forts à-coups, les calculs doivent être réalisés à l'aide du coefficient de service de 1,4.

 $^{^{3)}}$ Les couples nominaux sont fortement réduits à partir de +80°C. N'hésitez pas à nous consulter.

6.2 Allonges élastiques



Dimensionnement:

Le couple nominal T_N de l'arbre G/GX/GZ doit, en tenant compte du facteur de service S^1), être au moins égal au couple de l'installation T_{Anl} à transmettre.

$$T_N \geqslant T_{Anl} * S$$

Schémas cotés

Dim.					Préalésag	je Ød H7 ²⁾							
	Α	В	С	ØD	min. Ø d1/d2	max. Ø d1/d2	Е	F	L _N	ØN ₂	ØR	Т	T _K /M
1	24	7	5	56	8	25	22	2	24	36	30	1,5	Ø44/2xM6
2	24	8	5	85	12	38	20	4	28	55	40	1,5	Ø68/2xM8
4	28	8	5	100	15	45	24	4	30	65	45	1,5	Ø80/3xM8
8	32	10	5	120	18	55	28	4	42	80	60	1,5	Ø100/3xM10
16	42	12	5	150	20	70	36	6	50	100	70	1,5	Ø125/3xM12
25	46	14	5	170	20	85	40	6	55	115	85	1,5	Ø140/3xM14
30	58	16	5	200	25	100	50	8	66	140	100	1,5	Ø165/3xM16
50	58	16	5	200	25	100	50	8	66	140	100	1,5	Ø165/3xM16
90	70	19	5	260	30	110	62	8	80	160	125	2,0	Ø215/3xM20

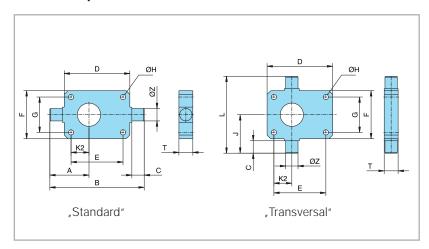
¹⁾ Les couples nominaux sont valables pour un service sous charge avec de faibles à-coups; Sous charge avec de forts à-coups, les calculs doivent être réalisés à l'aide du coefficient de service de 1,4.

²⁾ Rainure selon DIN 6885/1.

6.3 Code de commande

6.3.1 Accouplements

- 1) Série: R/MKR/MKE/MKS
- 2) Dimension
- 3) Couple (uniquement pour série "MKR / MKE / MKS")
- 4) Alésage du moyeu d1
- 5) Alésage du moyeu d2


6.3.2 Allonges élastiques

- 1) Série : G / GX / GZ / ZR / PW
- 2) Dimension
- 3) Longueur
- 4) Alésage du moyeu d1
- 5) Alésage du moyeu d2

6

7.1 Plaques articulées

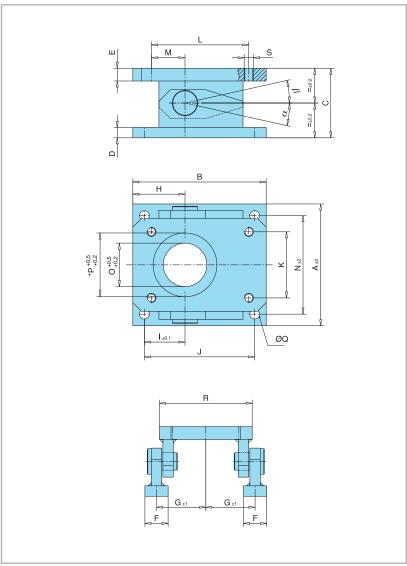
Pour pouvoir effectuer des pivotements et des basculements avec les vérins, les éléments moteurs doivent être fixés de façon mobile en deux points. Ceci peut être obtenu par des plaques articulées et une tête IV, ou par une tête articulée. Il convient de limiter autant que possible les mouvements de flexion résultant du mouvement pivotant, en prévoyant des constructions articulées à faible friction.

7.1.1 Série SHE

Taille	А	В	С	D	E	F	G	ØН	J	K2	L	Т	ØZ	capacité de	levage max.
														"Standard"	"Transversal"
0,5							SU	r deman	de						
1.1	95,5	205	25	150	130	100	80	8,5	77,5	58	155	25	20	15 kN	15 kN
2							SU	r deman	de						
3.1	102,5	240	35	165	135	120	90	13	97,5	50	195	35	30	30 kN	30 kN
5.1	126,5	305	45	212	168	155	114	17	124	58	248	45	40	50 kN	50 kN
10	143,5	350	55	235	190	200	155	21	157,5	63,5	315	55	50	80 kN	100 kN
15.1	143,5	350	55	235	190	200	155	21	157,5	63,5	315	55	50	80 kN	100 kN
20.1	190	430	65	295	240	215	160	28	175	95	350	65	60	200 kN	160 kN
25	202,5	495	70	350	280	260	190	35	202,5	95	405	70	65	220 kN	250 kN
35															
50.1															
75							SU	r deman	de						
100.1															
150															

7.1.2 Série MERKUR

Taille	Α	В	С	D	Е	F	G	ØН	J	K2	L	Т	ØZ
0	34,5	85	10	60	48	50	38	6,6	37,5	16	75	15	10
1	48,5	115	15	80	60	72	52	9	53,5	21	107	20	15
2	62,5	145	20	100	78	85	63	9	65	29	130	25	20
3	76,5	175	20	130	106	105	81	11	75	42	150	30	25
4	110,5	245	30	180	150	145	115	13,5	105	63	210	40	35
5	120,5	275	35	200	166	165	131	22	120	66	240	50	45
6													
7						9	sur demand	е					
8													


7.1.3 Série HSE

Taille	А	В	С	D	Е	F	G	ØН	J	K2	L	Т	ØZ	capacite de "Standard"	levage max. "Transversal"
32							SU	r deman	de						
36.1	80	190	25	138	110	105	80	9	78,5	40	157	25	20	10 kN	10 kN
50 / 50.1	105	250	35	175	140	130	100	13	102,5	50	205	35	30	25 kN	25 kN
63 / 63.1	140	330	45	235	190	160	120	17	127,5	70	255	45	40	50 kN	50 kN
80 / 80.1	160	390	55	275	220	200	150	21	157,5	75	315	55	50	100 kN	100 kN
100 / 100.1	185	465	65	330	270	230	175	28	182,5	87,5	365	65	60	110 kN	110 kN
125 / 125.1															
140							su	r deman	de						
200.1															

7.2 Supports articulés

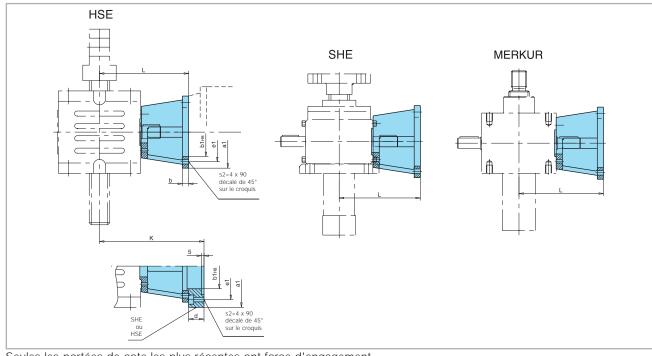
Pour pouvoir effectuer des pivotements et des basculements avec les vérins, les éléments moteurs doivent être fixés de façon mobile en deux points. Ceci peut être obtenu par des supports articulés et une tête IV, ou par une tête articulée, ou par une exécution à œil articulé. Il convient de limiter autant que possible la force latérale résultant du pivotement, en prévoyant des constructions articulées à faible friction.

Seules les portées de cote les plus récentes ont force d'engagement

Taille										Dime	nsions	;									
	Α	В	C	D	Ε	F	G	Н	- 1	J	K	L	M	N	0	P*	ØQ	R	S	α°	β°
SHE 1.1	150										80	130	58		80	80					
HSE 32	138	138	60	10	10	20	60	54	40	110	62	95	31	120	62	62	9	108	M8	26	42
HSE 36.1	138										80	110	40		72	72					
SHE 2,5/3.1	180	170	110	16	20	40	70	65	50	140	90	135	50	140	70	70	14	130	M12	35	55
HSE 50/50.1	100	170	110	10	20	40	70	03	50	140	100	140	50	140	100	100	14	130	IVIIZ	25	55
SHE 5/5.1	210	230	120	18	22	40	85	90	70	190	114	168	58	170	110	110	17	160	M16	28	44
HSE 63/63.1	210	230	120	10	22	40	00	70	70	190	120	190	70	170	122	122	17	100	IVITO	20	44
SHE 10/15.1	270	270	150	22	28	50	110	100	75	220	155	190	63,5	220	130	130	21	200	M20	28	45
HSE 80/80.1	270	270	150	22	20	50	110	100	/5	220	150	220	75	220	152	152	21	200	IVIZU	20	45
SHE 20/20.1	350	340	190	30	33	60	145	130	95	280	160	240	95	290	100	160	26	260	M24	30	45
HSE 100/100.1	330	340	170	50	55	00	143	130	73	200	175	270	87,5	270	185	185	20	200	IVIZ4	50	40

^{*} uniquement avec immobilisation en rotation

Les supports articulés pour la série MERKUR sont disponibles sur demande



7.3 Lanternes moteurs

La diversité de la mise en œuvre des vérins à vis sans fin requiert, dans certaines situations, le montage rapporté direct de moteurs. Si le poids et les dimensions des deux éléments d'entraînement ne diffèrent pas trop, le montage rapporté direct du moteur s'effectue à l'aide de brides IEC et d'accouplements élastiques à torsion.

Si vous désirez réaliser vous-même la fixation du moteur d'entraînement, veuillez nous faire parvenir un schéma coté des raccordements. Il vous incombe également de définir la position de montage sur le vérin (à droite ou à gauche – voir chap. 3.10). Pour des raisons de simplification, seuls les brides de montage pour moteurs fréquemment mises en œuvre ont été reproduites ci-dessous.

Seules les portées de cote les plus récentes ont force d'engagement

7.3.1 Série SHE

Taille	Type de	Dime	ensions de la	bride	Arbre	Accouple-			Dimensions	6	
	moteur	Øa1	Øb1	Øe1	du moteur	ment	L	b	K	d	s2
2,5/3.1	63	105	70	85	Ø11x23	R19/24	136	10	-	-	4xØ6,6
2,5/3.1	71	105	70	85	Ø14x30	R19/24	141	10	-	-	4xØ6,6
2,5/3.1	80	120	80	100	Ø19x40	R19/24	151	10	-	-	4xØ6,6
2,5/3.1	90	140	95	115	Ø24x50	R24/28	164	10	-	-	4xØ9,0
2,5/3.1	SK 11 EF	120	80	100	Ø20x40	R19/24	151	10	-	-	4xØ9,0
2,5/3.1	SK 02 F	120	80	100	Ø20x40	R19/24	151	10	-	-	4xØ6,6
2,5/3.1	SK 12 F	140	95	115	Ø25x50	R24/28*	164	10	-	-	4xØ9,0

^{*}Moyeu en acier

Dimension de bride conseillée

7.3 Lanternes moteurs

7.3.1 Série SHE à partir de la taille

Taille	Type de	Dime	nsions de la	bride	Arbre	Accouple-			Dimensions	;	
	moteur	Øa1	Øb1	Øe1	du moteur	ment	L	b	K	d	s2
5/5.1	71	140	95	115	Ø14x30	R 24/28	167	12	-	-	4xØ9
5/5.1	80	140	95	115	Ø19x40	R 24/28	177	12	-	-	4xØ9
5/5.1	90	140	95	115	Ø24x50	R 24/28	187	12	-	-	4xØ9
5/5.1	100	160	110	130	Ø28x60	R 24/28	197	12	-	-	4xØ9
5/5.1	SK 11 EF	140	95	115	Ø20x40	R 24/28	177	12	-	-	4xØ9
5/5.1	SK 02 F	140	95	115	Ø20x40	R 24/28	177	12	-	-	4xØ9
5/5.1	SK 12 F	140	95	115	Ø25x50	R 24/28	187	12	-	-	4xØ9
5/5.1	SK 13 F	140	95	115	Ø25x50	R 24/28	187	12	-	-	4xØ9
5/5.1	SK 22 F	160	110	130	Ø30x60	R 24/28*	197	12	-	-	4xØ9
5/5.1	SK 23 F	160	110	130	Ø30x60	R 24/28*	197	12	-	-	4xØ9
15.1	80	140	95	115	Ø19x40	R 28/38	200	10	-	-	4xØ9
15.1	90	160	110	130	Ø24x50	R 28/38	210	10	-	-	4xØ9
15.1	100	160	110	130	Ø28x60	R 28/38	220	10	-	-	4xØ9
15.1	112	160	110	130	Ø28x60	R 28/38	220	10	-	-	4xØ9
15.1	SK 11 EF	140	95	115	Ø20x40	R 28/38	200	10	-	-	4xØ9
15.1	SK 02 EF	140	95	115	Ø20x40	R 28/38	200	10	-	-	4xØ9
15.1	SK 12 EF	160	110	130	Ø25x50	R 28/38	210	10	-	-	4xØ9
15.1	SK 21 EF	160	110	130	Ø25x50	R 28/38	210	10	-	-	4xØ9
20.1	80	160	110	130	Ø19x40	R 28/38	221	12	-	-	4xØ9
20.1	90	160	110	130	Ø24x50	R 38/45	235	12	-	-	4xØ11
20.1	100	200	110	130	Ø28x60	R 42/55	248	15	-	-	4xØ14
20.1	112	200	110	130	Ø28x60	R 42/55	248	15	-	-	4xØ14
20.1	SK 02 F	160	110	130	Ø20x40	R 28/38	221	12	-	-	4xØ9
20.1	SK 12 F	160	110	130	Ø25x50	R 38/45	235	12	-	-	4xØ11
20.1	SK 11 EF	160	110	130	Ø25x50	R 38/45	235	12	-	-	4xØ11

^{*} moyeu en acier

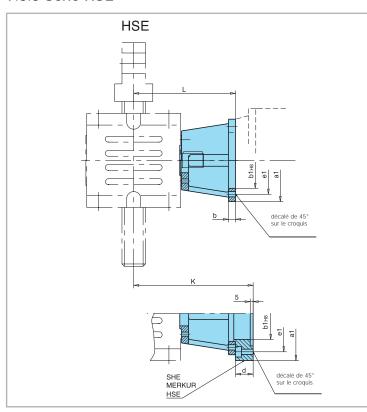
7.3.2 Série MERKUR

Taille	Type de		Dime	nsions	de la	bride		Arbre	Accouple-			Dimei	nsions		
	moteur	Ø	a1	Ø	b1	Ø	íe1	du moteur	ment	L	b	K	d	s2 (B14	-Design)
M2	80	120	140	80	110	100	130	Ø19x40	R19/24			132,5	20	4xØ6,6	4xØ9
M3	63	90	120	60	80	75	100	Ø11x23	R19/24	-	-	142	12	4xØ5,5	4xØ6,6
M3	71	105	140	70	95	85	115	Ø14x30	R19/24	-	-	147	17	4xØ6,6	4xØ9
M3	80	120	160	80	110	100	130	Ø19x40	R19/24	-	-	157	27	4xØ6,6	4xØ9
M3	90	140	160	95	110	115	130	Ø24x50	R19/24	-	-	167	37	4xØ6,6	4xØ9
M3	SK 11 EF	120	140	80	95	100	115	Ø20x40	R19/24	-	-	157	27	4xØ6,6	4xØ9
M3	SK 02 F	120	140	80	95	100	115	Ø20x40	R19/24	-	-	157	27	4xØ6,6	4xØ9
M3	SK 12 F	120	140	80	95	100	115	Ø25x50	R19/24*	-	-	167	37	4xØ6,6	4xØ9
M4	71	120	140	80	95	100	115	Ø14x30	R 24/28	-	-	169,5	10	4xØ6,6	4xØ9
M4	80	120	160	80	110	100	130	Ø19x40	R 24/28	-	-	179,5	20	4xØ6,6	4xØ9
M4	90	140	160	95	110	115	130	Ø24x50	R 24/28	-	-	189,5	30	4x	Ø9
M4	100	160	200	110	130	130	165	Ø28x60	R 24/28	-	-	199,5	40	4xØ9	4xØ11
M4	SK 11 EF	120	140	80	95	100	115	Ø20x40	R 24/28	-	-	179,5	20	4xØ6,6	4xØ9
M4	SK 02 F	120	140	80	95	100	115	Ø20x40	R 24/28	-	-	179,5	20	4xØ6,6	4xØ9
M4	SK 12 F	140	160	95	110	115	130	Ø25x50	R 24/28	-	-	189,5	30	4x	Ø9
M4	SK 13 F	140	160	95	110	115	130	Ø25x50	R 24/28	-	-	189,5	30	4x	Ø9
M4	SK 22 F	160	200	110	130	130	165	Ø30x60	R 24/28*	-	-	199,5	40	4xØ9	4xØ11
M4	SK 23 F	160	200	110	130	130	165	Ø30x60	R 24/28*	-	-	199,5	40	4xØ9	4xØ11

^{*} moyeu en acier

Autre bride de moteur sur demande

Dimension de bride conseillées


Dimension de bride conseillées

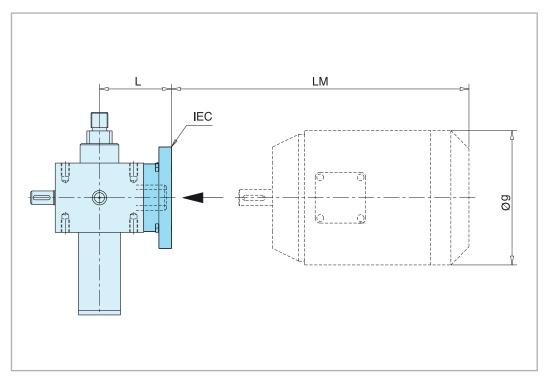
7.3 Lanternes moteurs

7.3.3 Série HSE

Taille	Type de		Dime	ensions	de la	bride		Arbre	Accouple-			Dime	nsions		
	moteur	Ø			b1		e1	du moteur	ment	L	b	K	d	s	2
50.1	63	90	120	60	80	75	100	Ø11x23	R19/24	-	-	140,5	12	4xØ5,5	4xØ6,6
50.1	71	105	140	70	95	85	115	Ø14x30	R19/24	-	-	145,5	17	4xØ6,6	4xØ9
50.1	80	120	160	80	110	100	130	Ø19x40	R19/24	-	-	155,5	27	4xØ6,6	4xØ9
50.1	90	140	160	95	110	115	130	Ø24x50	R19/24	-	-	165,5	37	4x	Ø9
50.1	SK 11 EF	120	140	80	95	100	115	Ø20x40	R19/24	-	-	155,5	27	4xØ6,6	4xØ9
50.1	SK 02 F	120	140	80	95	100	115	Ø20x40	R19/24	-	-	155,5	27	4xØ6,6	4xØ9
50.1	SK 12 F	120	140	80	95	100	115	Ø25x50	R19/24*	-	-	165,5	37	4xØ6,6	4xØ9
63.1	71	105	140	70	95	85	115	Ø14x30	R 24/28	-	-	168,5	10	4xØ6,6	4xØ9
63.1	80	120	160	80	110	100	130	Ø19x40	R 24/28	-	-	178,5	20	4xØ6,6	4xØ9
63.1	90	140	160	95	110	115	130	Ø24x50	R 24/28	-	-	188,5	30	4x	Ø9
63.1	100	160	200	110	130	130	165	Ø28x60	R 24/28	-	-	198,5	40	4xØ9	4xØ11
63.1	SK 11 EF	120	140	80	95	100	115	Ø20x40	R 24/28	-	-	178,5	20	4xØ6,6	4xØ9
63.1	SK 02 F	120	140	80	95	100	115	Ø20x40	R 24/28	-	-	178,5	20	4xØ6,6	4xØ9
63.1	SK 12 F	140	160	95	110	115	130	Ø25x50	R 24/28	-	-	188,5	30	4x	Ø9
63.1	SK 13 F	140	160	95	110	115	130	Ø25x50	R 24/28	-	-	188,5	30	4x	Ø9
63.1	SK 22 F	160	200	110	130	130	165	Ø30x60	R 24/28*	-	-	198,5	40	4xØ9	4xØ11
63.1	SK 23 F	160	200	110	130	130	165	Ø30x60	R 24/28*	-	-	198,5	40	4xØ9	4xØ11
80.1	80	16	50	11	10	13	30	Ø19x40	R 28/38	232	15	-	-	4x(Ø 9
80.1	90	16	60	11	10	13	30	Ø24x50	R 28/38	232	15	-	-	4x0	Ø 9
80.1	100	16	60	11	10	13	30	Ø28x60	R 38	232	15	-	-	4x0	Ø 9
80.1	112	16	60	11	10	13	30	Ø28x60	R 38	232	15	-	-	4x(Ø 9
80.1	SK 21 F	16	60	11	10	13	30	Ø25x50	R 28/38	232	15	-	-	4x0	Ø 9
80.1	SK 12 F	16	60	11	10	13	30	Ø25x50	R 28/38	232	15	-	-	4x(Ø 9
80.1	SK 22 F	16	60	11	10	13	30	Ø30x60	R 38	232	15	-	-	4x0	Ø 9
80.1	SK 31 EF	16	60	11	10	13	30	Ø30x60	R 38	232	15	-	-	4x(Ø 9

^{*} moyeu en acier

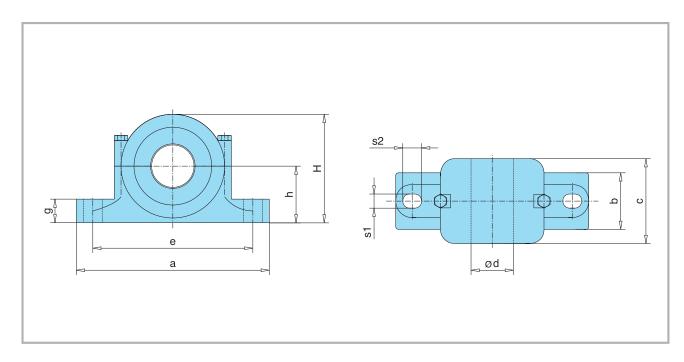
Sur demande, les brides de montage pour moteurs sont également disponibles en versions spéciales


Dimension de bride conseillées

7.4 Brides moteurs pour vérins arbre creux

7.4.1 Série MERKUR

Montage rapporté du moteur sur le vérin à vis sans fin par arbre creux et bride.


Taille	Type de		Flasque IEC		Arbre du moteur			
	moteur	Øa1	Øb1	Øe1 H8		L	LM ¹⁾ (env.)	Øg
M 0				S	sur demande			
M 1	63	90	60	75	Ø11x23	64	190	126
M 1	71	105	70	85	Ø14x30	64	213	142
M 2	63	90	60	75	Ø11x23	72,5	190	126
M 2	71	105	70	85	Ø14x30	72,5	213	142
M 2	80	120	80	100	Ø19x40	72,5	233	159
M 3	71	105	70	85	Ø14x30	82,5	213	142
M 3	80	120	80	100	Ø19x40	82,5	233	159
M 4	80	120	80	100	Ø19x40	117,5	233	159
M 4	90	140	95	115	Ø24x50	117,5	280	179
M 4	100	160	110	130	Ø28x60	117,5	308	200
M 5	80	120	80	100	Ø19x40	127,5	233	159
M 5	90	140	95	115	Ø24x50	127,5	280	179
M 5	112	160	110	130	Ø28x60	127,5	328	222
M 6								
M 7				9	sur demande			
M 8								

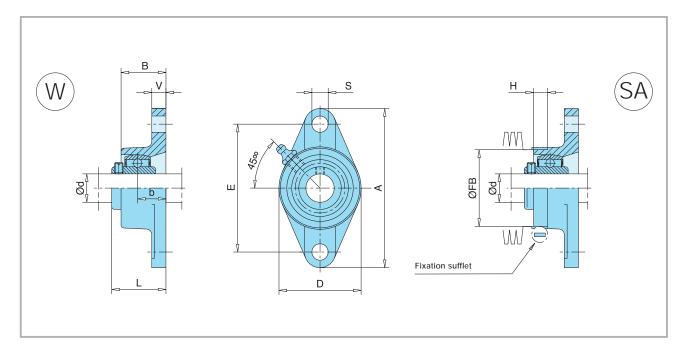
¹⁾ sans frein

137

7.5 Paliers

Les paliers Pfaff-Silberblau selon DIN 736, complets avec roulements dotés de roulements conique et de manchon de serrage. Carter avec garniture feutre des deux côtés selon DIN 5419. Cette série de palier convient particulièrement comme palier intermédiaire des arbres articulés élastiques, étant donné que le manchon de serrage peut être fixé sur le diamètre extérieur du tube.

Si l'on utilise plus d'une palier, seul 1 palier doit être utilisé comme palier fixe, pour éviter des contraintes


Désignation de la commande :

SN _____

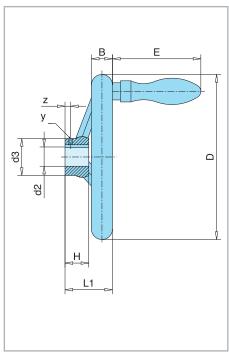
Dim.	Ød	Н	h	е	S1	S2	С	a	b	g	Poids
											kg
SN 505	20	71	40	130	15	20	67	165	46	19	1,4
SN 506	25	87	50	150	15	20	77	185	52	22	1,9
SN 507	30	92	50	150	15	20	82	185	52	22	2,0
SN 508	35	106	60	170	15	20	85	205	60	25	2,7
SN 509	40	115	60	170	15	20	85	205	60	25	2,9
SN 510	45	112	60	170	15	20	90	205	60	26	2,8
SN 511	50	127	70	210	18	23	95	255	68	28	4,2
SN 512	55	133	70	210	18	23	105	255	70	30	4,9
SN 513	60	148	80	230	18	23	110	275	80	30	6,1
SN 515	65	154	80	230	18	23	115	280	80	30	6,8
SN 516	70	175	95	260	22	27	120	315	90	32	9,3
SN 517	75	181	95	260	22	27	125	320	90	32	9,7
SN 518	80	192	100	290	22	27	145	345	100	35	12,8
SN 519	85	210	112	290	22	27	140	345	100	35	15,0
SN 520	90	215	112	320	26	32	160	380	110	40	17,0
SN 522	100	239	125	350	26	32	175	410	120	45	18,5
SN 524	110	271	140	350	26	32	185	410	120	45	24,5
SN 528	125	302	150	420	35	42	205	500	150	50	38,0

7.6 Paliers à flasque

Logement conseillé de la vis sans fin pour vérins à vis sans fin, type. 2

Désignation de la commande : OWF ___ U-W

Désignation de la commande : OWF ___ U-SA¹⁾


(W= Standard; SA = possibilité pour la fixation soufflet¹⁾)

Dim.	Poids	Dimensions en mm										
	kg	d	D	В	E	Α	V	S	L	H ¹⁾	FB ¹⁾	b
OWF 12 U		12										
OWF 15 U	0,49	15	60	25,5	90	113	11	12	33,3	12	55	15
OWF 20 U		20										
OWF 25 U	0,63	25	68	27	99	130	13	16	35,7	12	65	16
OWF 30 U	0,94	30	80	31	117	148	13	16	40,2	15	75	18
OWF 35 U	1,20	35	90	34	130	161	14	16	44,4	15	85	19
OWF 40 U	1,60	40	100	36	144	175	14	16	51,2	15	95	21
OWF 45 U	1,90	45	108	38	148	188	15	19	52,2	15	100	22
OWF 50 U	2,20	50	115	40	157	197	15	19	54,6	15	110	22
OWF 60 U	4,10	60	140	48	202	250	18	23	68,7	25	135	29
OWF 80 U	7,90	80	180	59	233	290	20	25	84,3	25	175	35

¹⁾ Paliers à flasque "SA" - possibilité pour la fixation soufflet

7.7 Volants

Autres exécutions réalisables sur demande

Pour l'entraînement manuel d'urgence ou la commande manuelle des vérins à vis sans fin. **Exécution** : Volant selon DIN 960 avec poignée bombée tournante (DIN 98) en aluminium anodisé et poli

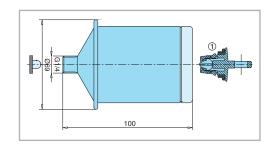
Désignation de la commande : Volant - ____(indiquer le taille, par ex. : HSE32)

Taille	ØD	Ød2	Ød3	Н	L1	В	L2	Z	у	Е
SHE 0,5 M 1	80	10	24	16	29	14	55	6	M3	55
SHE 1.1 HSE 32 HSE 36.1 M 2	125	14	28	18	36	16	70	9	M 4	7
SHE 3.1 HSE 50.1 M 3	160	16	32	20	40	18	70	9	M 4	70
SHE 5.1 M 4 HSE 63.1	225	20 20 24	42	26	48	24	88	9	M 4	88
SHE 10 ¹⁾ /15.1 M 5 HSE 80.1	280	25 25 32	50	30	53	26	111	10	M 6	110
SHE 20.1 M 6 HSE 100.1	400	28 30 38	65	38	63	32	124	10	M 6	125

Rainure de clavette selon DIN 6885 page 1

la taille 10 est uniquement encore disponible sous forme d'exécution spéciale

7.8 Dispositifs de graissage


7.8.1 Graisseurs automatiques

Les graisseurs automatiques sont remplis de graisse de haute qualité et offrent un graissage permanent des vis sans fin et des axes filetés pour une durée de 12 mois. C'est une solution particulièrement économique, qui permet de réduire les intervalles d'entretien.

Série Standard

Caractéristiques techniques :

- boîtier métallique
- entraînement par réaction électrochimique
- A une température de 20°C, la durée peut être de 1, 3, 6 ou 12 mois (la couleur de la vis d'activation 5 caractérise la durée de distribution)
- volume de 120 cm³
- pression maxi établie de 4 bars
- température de service possible de 0°C à +40°C maximum

5	Couleur	Intervalle de distribution
	jaune	1 mois
	vert	3 mois
	rouge	6 mois
	gris	12 mois

¹⁾ Lors d'une nouvelle commande, utiliser la taille 15.1;

7.9 Interrupteurs

7.9.1 Interrupteur de fin de course mécanique

Fins de course étanches permettant l'arrêt de l'installation ou le contrôle des écrous de sécurité du vérin à vis ou de l'installation

Caractéristiques techniques XCK- _ ___ :

Type de construction : carter étanche en plastique

(ou en métal)

Température ambiante : -25°C à +70°C

Protection: IP 66

Entrée de ligne : ISO, M16x1,5 (M20x1,5)

Protection contre les courts-circuits: 10A

Utilisation interrupteur auxiliaire : Inverseur un seul circuit O / F avec (sans) fonction

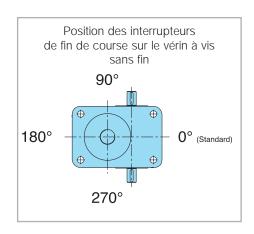
de déclic et ouverture forcée du rupteur

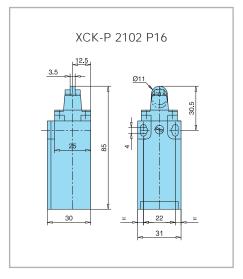
()Les valeurs entre parenthèses sont valables pour XCK-J

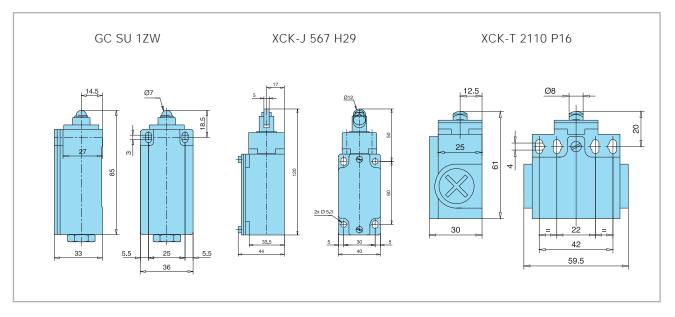
Caractéristiques techniques GC SU 1ZW:

Type de construction : carter étanche en métal

Température ambiante : -30°C à +80°C

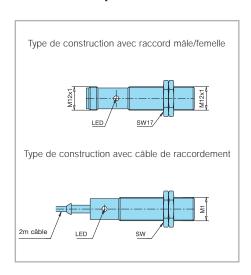

Protection: IP 65


Entrée de ligne : ISO, M16x1,5


Protection contre les courts-circuits : 10A

Utilisation interrupteur auxiliaire : Inverseur un seul circuit O / F avec fonction de

déclic et ouverture forcée du rupteur



7.9 Interrupteurs

7.9.2 Interrupteur de fin de course inductifs

Ils peuvent être utilisés en compléments, pour la surveillance de l'écrou de sécurité ou de l'arrêt de la tige filetée.

Тур	IF 5598	IF 0006	IG 0093
Raccordement /	Fiche	Câble PVC	Câble PVC
câbles	E10216	2m/2x0,5mm ²	2m/2x0,5mm ²
Tension de service	10-55V	20-250VAC	20250AC/DC
	PNP/NPN programm.	Rupteur	Rupteur
Intensité maximale admissible	300 mA	250 mA	350mA
Type de protection	IP67	IP67	IP67
Température ambiante	- 25 ° + 80 °	- 25 ° + 80 °	- 25 ° + 80 °
Filetage M1/2	M12/M12x1	M12x1	M18x1

Dimensions et autres caractéristiques techniques disponibles sur demande

7.10 Commandes électriques

Pfaff-Silberblau fournit des armoires électriques conventionnelles ainsi que des systèmes à automates programmables (SPS) complets, sur demande.

7.10.1 Armoires électriques

pour l'alimentation des vérins/vérins linéaires avec courant triphasé (~400 V) conformément aux directives DIN EN 60204 Teil 1, Teil 32

Type H1TM	Puissance motrice allant ju	squ'à kW
Version de base		4,0
avec boîtier de comm	ande mural externe	4,0
avec boîtier de comm	ande à suspension externe	4,0
avec limiteur de charç	ge électrique	4,0
avec boîtier de comm et limiteur de charge		4,0
avec boîtier de comm et limiteur de charge	ande à suspension externe électrique	4,0

Disponible sur demande avec moteur à courant monophasé et courant continu.

H1TM Version de base

- type de protection IP 54
- boîtier en matière plastique (270 x 220 x 108 mm)
- tension de service ~ 400 V 50 Hz
- tension de commande 42 V 50 Hz
- · relais de protection du moteur
- touches "MONTÉE DESCENTE"
- les signaux des fins de course peuvent être traités
- "ARRET D'URGENCE" intégré et contacteur-inverseur

H1TM avec auxiliaires de commande manuels externes et contacteur principal

- boîtier de commande mural avec touches "MONTEE-DESCENTE" et "ARRET d'URGENCE" (livré séparément) ou
- boîtier de commande suspendu avec touches "MONTEE-DESCENTE" et "ARRET d'URGENCE" (câble de 5 m inclus)

H1TM avec limiteur d'effort électronique

(nécessaire pour des appareils de levage à partir d'une capacité de 1 000 kg)

- · avec contacteur principal
- · relais de protection contre les surcharges
- · déverrouillage à clé
- · témoin lumineux en cas de dérangement

Informations générales

Sur cette page, nous avons regroupé pour vous les liens les plus importants vers nos produits, nos sites, nos possibilités de téléchargement. Vous y trouverez en outre des informations sur nos certifications ainsi que l'accès à notre lettre d'informations et une liste importante de téléchargements pour nos catalogues de produits.

CAD & go

Notre banque de données CAO renferme tous les composants disponibles de nos produits relatifs à la technique d'entraînement. Vous économiserez du temps en incorporant dans votre programme les données CAO toutes prêtes en 2D ou 3D. Il suffit d'entrer les paramètres souhaités et d'exporter - terminé! www.Pfaff-Silberblau.com/CAD-go/

Centre de téléchargement

Que ce soient des informations sur notre entreprise, des descriptions de nos produits, des images, des données de CAO ou des articles spécialisés - vous trouverez ici tout pour assouvir votre soif de connaissances - prêts à être téléchargés www.Pfaff-Silberblau.com/download/

Sites

Cherchez-vous une de nos filiales la plus proche de votre entreprise?

Copiez tout simplement le lien suivant dans la ligne de votre navigateur Web et marquez le pays et la branche, vous obtiendrez ensuite la filiale appropriée avec toutes les informations de contact.

www.Pfaff-Silberblau.com/international/

Certifications

Afin de livrer un niveau de qualité toujours aussi élevé, toutes nos étapes de production sont certifiées. Le lien suivant vous permet de télécharger, sous forme de documents PDF, les différentes certifications nationales et internationales selon la norme DIN ISO 9001 et la directive 94/9/CE.

www.Pfaff-Silberblau.com/certificates/

Industrie de l'acier et industrie lourde

Le lien suivant vous permet d'obtenir des premières informations claires sur nos solutions pour l'industrie de l'acier et l'industrie lourde. Sur cette page, vous trouverez également des prospectus et des textes de presse à télécharger. www.Pfaff-Silberblau.com/heavy-industry/

ATEX

Nous livrons également des produits pour les domaines techniques "entraînements" et "élévateurs" selon la nouvelle directive européenne 94/9/CE pour la mise en œuvre dans des zones explosives. Ce lien vous en donne un aperçu.

www.Pfaff-Silberblau.com/atex/

Lettre d'informations / Catalogues

Souhaitez-vous recevoir des informations actuelles sur nos nouveaux produits et services ainsi que sur des objets de référence intéressants ? Pour cela, abonnez-vous à notre lettre d'informations. De plus sur cette page, vous pouvez demander une version imprimée de nos catalogues et prospectus.

www.Pfaff-Silberblau.com/newsletter/

COLUMBUS McKINNON Engineered Products GmbH Headquarters

Am Silberpark 2 - 8 86438 Kissing/Germany Phone +49 8233 2121 777 +49 8233 2121 805 antriebstechnik@cmco.eu www.pfaff-silberblau.com

Numerissimo 01/2021